Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Targeting the Pathological Hallmarks of Alzheimer’s Disease Through Nanovesicleaided Drug Delivery Approach

Author(s): Rubina Roy, Pallab Bhattacharya and Anupom Borah*

Volume 23, Issue 9, 2022

Published on: 30 June, 2022

Page: [693 - 707] Pages: 15

DOI: 10.2174/1389200223666220526094802

Price: $65

conference banner
Abstract

Introduction: Nanovesicle technology is making a huge contribution to the progress of treatment studies for various diseases, including Alzheimer’s disease (AD). AD is the leading neurodegenerative disorder characterized by severe cognitive impairment. Despite the prevalence of several forms of anti-AD drugs, the accelerating pace of AD incidence cannot becurbed, and for rescue, nanovesicle technology has grabbed much attention.

Methodology: Comprehensive literature search was carried out using relevant keywords and online database platforms. The main concepts that have been covered included a complex pathomechanism underlying increased acetylcholinesterase (AchE) activity, β-amyloid aggregation, and tau-hyperphosphorylation forming neurofibrillary tangles (NFTs) in the brain, which are amongst the major hallmarks of AD pathology. Therapeutic recommendations exist in the form of AchE inhibitors, along with anti-amyloid and anti-tau therapeutics, which are being explored at a high pace. The degree of the therapeutic outcome, however, gets restricted by the pharmacological limitations. Susceptibility to peripheral metabolism and rapid elimination, inefficiency to cross the blood-brain barrier (BBB) and reach the target brain site are the factors that lower the biostability and bioavailability of anti-AD drugs. The nanovesicle technology has emerged as a route to preserve the therapeutic efficiency of the anti-AD drugs and promote AD treatment. The review hereby aims to summarize the developments made by the nanovesicle technology in aiding the delivery of synthetic and plant-based therapeutics targeting the molecular mechanism of AD pathology.

Conclusion: Nanovesicles appear to efficiently aid in target-specific delivery of anti-AD therapeutics and nullify the drawbacks posed by free drugs, besides reducing the dosage requirement and the adversities associated. In addition, the nanovesicle technology also appears to uplift the therapeutic potential of several phyto-compounds with immense anti-AD properties. Furthermore, the review also sheds light on future perspectives to mend the gaps that prevail in the nanovesicle-mediated drug delivery in AD treatment strategies.

Keywords: Dementia, liposome, acetylcholinesterase, beta-amyloid aggregation, tau-phosphorylation, rivastigmine, curcumin, osthole.

Graphical Abstract
[1]
Harding, C.V.; Heuser, J.E.; Stahl, P.D. Exosomes: Looking back three decades and into the future. J. Cell Biol., 2013, 200(4), 367-371.
[http://dx.doi.org/10.1083/jcb.201212113] [PMID: 23420870]
[2]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[3]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 1-17.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[4]
Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M.; Adeli-Sardou, M. Evaluation of carum-loaded niosomes on breast cancer cells: Physico-chemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay. Sci. Rep., 2019, 9(1), 7139.
[http://dx.doi.org/10.1038/s41598-019-43755-w] [PMID: 31073144]
[5]
AlSawaftah, N.; Pitt, W.G.; Husseini, G.A. Dual-Targeting and stimuli-triggered liposomal drug delivery in cancer treatment. ACS Pharmacol. Transl. Sci., 2021, 4(3), 1028-1049.
[http://dx.doi.org/10.1021/acsptsci.1c00066] [PMID: 34151199]
[6]
Al-Remawi, M.; Elsayed, A.; Maghrabi, I.; Hamaidi, M.; Jaber, N. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system. Pharm. Dev. Technol., 2017, 22(3), 390-398.
[http://dx.doi.org/10.1080/10837450.2016.1213745] [PMID: 27470482]
[7]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int. J. Pharm., 2018, 549(1-2), 201-217.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.041] [PMID: 30071309]
[8]
Zidan, A.S.; Hosny, K.M.; Ahmed, O.A.A.; Fahmy, U.A. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv., 2016, 23(5), 1536-1549.
[PMID: 25386740]
[9]
Kulkarni, P.; Rawtani, D.; Kumar, M.; Lahoti, S.R. Cardiovascular drug delivery: A review on the recent advancements in nanocarrier based drug delivery with a brief emphasis on the novel use of magnetoliposomes and extracellular vesicles and ongoing clinical trial re-search. J. Drug Deliv. Sci. Technol., 2020, 60, 102029.
[http://dx.doi.org/10.1016/j.jddst.2020.102029]
[10]
Kahana, M.; Weizman, A.; Gabay, M.; Loboda, Y.; Segal-Gavish, H.; Gavish, A.; Barhum, Y.; Offen, D.; Finberg, J.; Allon, N.; Gavish, M. Liposome-based targeting of dopamine to the brain: A novel approach for the treatment of Parkinson’s disease. Mol. Psychiatry, 2021, 26(6), 2626-2632.
[PMID: 32372010]
[11]
Yang, J.; Luo, S.; Zhang, J.; Yu, T.; Fu, Z.; Zheng, Y.; Xu, X.; Liu, C.; Fan, M.; Zhang, Z. Exosome-mediated delivery of antisense oligo-nucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease. Neurobiol. Dis., 2021, 148, 105218.
[http://dx.doi.org/10.1016/j.nbd.2020.105218] [PMID: 33296726]
[12]
Passoni, A.; Favagrossa, M.; Colombo, L.; Bagnati, R.; Gobbi, M.; Diomede, L.; Birolini, G.; Di Paolo, E.; Valenza, M.; Cattaneo, E.; Salmona, M. Efficacy of cholesterol nose-to-brain delivery for brain targeting in Huntington’s disease. ACS Chem. Neurosci., 2020, 11(3), 367-372.
[http://dx.doi.org/10.1021/acschemneuro.9b00581] [PMID: 31860272]
[13]
Ananbeh, H.; Vodicka, P.; Kupcova Skalnikova, H. Emerging roles of exosomes in huntington’s disease. Int. J. Mol. Sci., 2021, 22(8), 4085.
[http://dx.doi.org/10.3390/ijms22084085] [PMID: 33920936]
[14]
Ge, X.; Wei, M.; He, S.; Yuan, W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 2019, 11(2), E55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[15]
Pucek, A.; Tokarek, B.; Waglewska, E. Recent advances in the structural design of photosensitive agent formulations using “ soft ” colloi-dal nanocarriers. Pharmaceutics, 2020, 12(6), 587.
[16]
Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep.,, 2019, 20(2), 1479-1487.
[PMID: 31257471]
[17]
Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 2021, 190, 108352.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108352] [PMID: 33035532]
[18]
Uddin, M.S.; Kabir, M.T.; Jeandet, P.; Mathew, B.; Ashraf, G.M.; Perveen, A.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Novel Anti-Alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid. Med. Cell. Longev., 2020, 7039138.
[http://dx.doi.org/10.1155/2020/7039138]
[19]
Lozupone, M.; Solfrizzi, V.; D’Urso, F.; Di Gioia, I.; Sardone, R.; Dibello, V.; Stallone, R.; Liguori, A.; Ciritella, C.; Daniele, A.; Bellomo, A.; Seripa, D.; Panza, F. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: An update on emerging drugs; Taylor & Francis: Oxfordshire, UK, 2020.
[20]
Soeda, Y.; Takashima, A. New insights into drug discovery targeting tau protein. Front. Mol. Neurosci., 2020, 13, 590896.
[http://dx.doi.org/10.3389/fnmol.2020.590896] [PMID: 33343298]
[21]
Ovais, M.; Zia, N.; Ahmad, I.; Khalil, A.T.; Raza, A.; Ayaz, M.; Sadiq, A.; Ullah, F.; Shinwari, Z.K. Phyto-therapeutic and nanomedicinal approaches to cure alzheimer’s disease: Present status and future opportunities. Front. Aging Neurosci., 2018, 10(October), 284.
[http://dx.doi.org/10.3389/fnagi.2018.00284] [PMID: 30405389]
[22]
Farooqui, A.A.; Farooqui, T.; Madan, A.; Ong, J.H.J.; Ong, W.Y. Ayurvedic medicine for the treatment of dementia: Mechanistic aspects. Evid. Based Complement. Altern. Med, 2018, 2018, 2481076.
[23]
Ahmed, S.; Khan, S.T.; Zargaham, M.K.; Khan, A.U.; Khan, S.; Hussain, A.; Uddin, J.; Khan, A.; Al-Harrasi, A. Potential therapeutic natu-ral products against Alzheimer’s disease with reference of acetylcholinesterase. Biomed. Pharmacother., 2021, 139, 111609.
[http://dx.doi.org/10.1016/j.biopha.2021.111609] [PMID: 33915501]
[24]
Singh, A.K.; Rai, S.N.; Maurya, A.; Mishra, G.; Awasthi, R.; Shakya, A.; Chellappan, D.K.; Dua, K.; Vamanu, E.; Chaudhary, S.K.; Singh, M.P. Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid. Based Complement. Altern. Med., 2021, 2021, 5578574.
[25]
Al Harthi, S.; Alavi, S.E.; Radwan, M.A.; El Khatib, M.M.; AlSarra, I.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treat-ment of Alzheimer’s disease. Sci. Rep., 2019, 9(1), 9563.
[http://dx.doi.org/10.1038/s41598-019-46032-y] [PMID: 31266990]
[26]
Ruangritchankul, S.; Chantharit, P.; Srisuma, S.; Gray, L.C. Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia: A comprehensive literature review. Ther. Clin. Risk Manag., 2021, 17, 927-949.
[http://dx.doi.org/10.2147/TCRM.S323387] [PMID: 34511919]
[27]
Yang, X.; Li, X.; Liu, L.; Chen, Y.H.; You, Y.; Gao, Y.; Liu, Y.Y.; Yang, L.; Tong, K.; Chen, D.S.; Hao, J.R.; Sun, N.; Zhao, Z.M.; Gao, C. Transferrin-Pep63-liposomes accelerate the clearance of Aβ and rescue impaired synaptic plasticity in early Alzheimer’s disease models. Cell Death Discov., 2021, 7(1), 256.
[http://dx.doi.org/10.1038/s41420-021-00639-1] [PMID: 34548476]
[28]
Shah, V.M.; Nguyen, D.X.; Alfatease, A.; Bracha, S.; Alani, A.W. Characterization of pegylated and non-pegylated liposomal formulation for the delivery of hypoxia activated vinblastine-N-oxide for the treatment of solid tumors. J. Control. Release, 2017, 253, 37-45.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.022] [PMID: 28302582]
[29]
Wang, H.; Sui, H.; Zheng, Y.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale, 2019, 11(15), 7481-7496.
[http://dx.doi.org/10.1039/C9NR01255A] [PMID: 30942233]
[30]
Silindir Gunay, M.; Yekta Ozer, A.; Chalon, S. Drug delivery systems for imaging and therapy of parkinson’;s disease. Curr. Neuropharmacol., 2015, 14(4), 376-391.
[http://dx.doi.org/10.2174/1570159X14666151230124904]
[31]
Nair, K.L.; Thulasidasan, A.K.T.; Deepa, G.; Anto, R.J.; Kumar, G.S.V. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int. J. Pharm., 2012, 425(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.003] [PMID: 22266528]
[32]
Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci., 2020, 7, 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[33]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herb-al medicines: A review. Int. J. Nanomedicine, 2014, 9(1), 1-15.
[PMID: 24363556]
[34]
Ganesan, P.; Ko, H.M.; Kim, I.S.; Choi, D.K. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int. J. Nanomedicine, 2015, 10, 6757-6772.
[http://dx.doi.org/10.2147/IJN.S93918] [PMID: 26604750]
[35]
Fonseca-Santos, B. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2015, 10, 4981-5003.
[36]
Gothwal, A.; Singh, H.; Jain, S.K.; Dutta, A.; Borah, A.; Gupta, U. Behavioral and biochemical implications of dendrimeric rivastigmine in memory-deficit and Alzheimer’s induced rodents. ACS Chem. Neurosci., 2019, 10(8), 3789-3795.
[http://dx.doi.org/10.1021/acschemneuro.9b00286] [PMID: 31257860]
[37]
Gothwal, A.; Kumar, H.; Nakhate, K.T. Ajazuddin; Dutta, A.; Borah, A.; Gupta, U. Lactoferrin coupled lower generation pamam den-drimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer’s disease in mice. Bioconjug. Chem., 2019, 30(10), 2573-2583.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00505] [PMID: 31553175]
[38]
Shah, A.; Dobrovolskaia, M.A. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine , 2018, 14(3), 977-990.
[http://dx.doi.org/10.1016/j.nano.2018.01.014] [PMID: 29409836]
[39]
Elkhoury, K.; Koçak, P.; Kang, A.; Arab-Tehrany, E.; Ellis Ward, J.; Shin, S.R. Engineering smart targeting nanovesicles and their combi-nation with hydrogels for controlled drug delivery. Pharmaceutics, 2020, 12(9), 1-24.
[http://dx.doi.org/10.3390/pharmaceutics12090849] [PMID: 32906833]
[40]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6(DEC), 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[41]
Chen, L.J.; Yang, C.X.; Yan, X.P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem., 2017, 89(13), 6936-6939.
[http://dx.doi.org/10.1021/acs.analchem.7b01397] [PMID: 28605896]
[42]
Cascione, M.; De Matteis, V.; Leporatti, S.; Rinaldi, R. The new frontiers in neurodegenerative diseases treatment: Liposomal-based strate-gies. Front. Bioeng. Biotechnol., 2020, 8, 566767.
[http://dx.doi.org/10.3389/fbioe.2020.566767] [PMID: 33195128]
[43]
Jain, S.; Jain, V.; Mahajan, S.C. Lipid based vesicular drug delivery systems. Adv. Pharm. J., 2014, 2014, 574673.
[44]
Pandita, A.; Sharma, P. Pharmacosomes: An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. Int. Sch. Res. Notices, 2013, 2013, 348186.
[45]
Supraja, B.; Mulangi, S. An updated review on pharmacosomes, a vesicular drug delivery system. J. Drug Deliv. Ther., 2019, 9(1-s), 393-402.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2234]
[46]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[47]
Bunggulawa, E.J.; Wang, W.; Yin, T.; Wang, N.; Durkan, C.; Wang, Y.; Wang, G. Recent advancements in the use of exosomes as drug delivery systems 06 biological sciences 0601 biochemistry and cell biology. J. Nanobiotechnology, 2018, 16(1), 1-13.
[PMID: 29321058]
[48]
Scarpa, E.; Bailey, J.L.; Janeczek, A.A.; Stumpf, P.S.; Johnston, A.H.; Oreffo, R.O.C.; Woo, Y.L.; Cheong, Y.C.; Evans, N.D.; Newman, T.A. Quantification of intracellular payload release from polymersome nanoparticles. Sci. Rep., 2016, 6, 29460.
[http://dx.doi.org/10.1038/srep29460] [PMID: 27404770]
[49]
Zhang, X.; Zhang, P. Polymersomes in nanomedicine - A review. Curr. Nanosci., 2016, 13(2), 124-129.
[http://dx.doi.org/10.2174/1573413712666161018144519]
[50]
Jain, S.S.; Jagtap, P.S.; Dand, N.M.; Jadhav, K.R.; Kadam, V.J. Aquasomes: A novel drug carrier. J. Appl. Pharm. Sci., 2012, 2(1), 184-192.
[51]
Silva, M.V.F.; Loures, C.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.D.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci., 2019, 26(1), 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[52]
Haque, R.U.; Levey, A.I. Alzheimer’s disease: A clinical perspective and future nonhuman primate research opportunities. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26224-26229.
[http://dx.doi.org/10.1073/pnas.1912954116] [PMID: 31871211]
[53]
Deture, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 1-18.
[54]
Javaid, S.F.; Giebel, C.; Khan, M.A.; Hashim, M.J. Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000 Res., 2021, 10, 425.
[http://dx.doi.org/10.12688/f1000research.50786.1]
[55]
Rinne, J.O.; Kaasinen, V.; Järvenpää, T.; Någren, K.; Roivainen, A.; Yu, M.; Oikonen, V.; Kurki, T. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2003, 74(1), 113-115.
[http://dx.doi.org/10.1136/jnnp.74.1.113] [PMID: 12486280]
[56]
García-Ayllón, M.S.; Riba-Llena, I.; Serra-Basante, C.; Alom, J.; Boopathy, R.; Sáez-Valero, J. Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS One, 2010, 5(1), e8701.
[http://dx.doi.org/10.1371/journal.pone.0008701] [PMID: 20090844]
[57]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[58]
Roberts, B.R.; Lind, M.; Wagen, A.Z.; Rembach, A.; Frugier, T.; Li, Q.X.; Ryan, T.M.; McLean, C.A.; Doecke, J.D.; Rowe, C.C.; Ville-magne, V.L.; Masters, C.L. Biochemically-defined pools of amyloid-β in sporadic Alzheimer’s disease: Correlation with amyloid PET. Brain, 2017, 140(5), 1486-1498.
[http://dx.doi.org/10.1093/brain/awx057] [PMID: 28383676]
[59]
Mukherjee, S.; Perez, K.A.; Lago, L.C.; Klatt, S.; McLean, C.A.; Birchall, I.E.; Barnham, K.J.; Masters, C.L.; Roberts, B.R. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer’s disease. Brain Commun., 2021, 3(2), b028.
[http://dx.doi.org/10.1093/braincomms/fcab028] [PMID: 33928245]
[60]
Miao, J.; Shi, R.; Li, L.; Chen, F.; Zhou, Y.; Tung, Y.C.; Hu, W.; Gong, C.X.; Iqbal, K.; Liu, F. Pathological tau from Alzheimer’s brain induces site-specific hyperphosphorylation and sds- and reducing agent-resistant aggregation of tau in vivo. Front. Aging Neurosci., 2019, 11, 34.
[http://dx.doi.org/10.3389/fnagi.2019.00034] [PMID: 30890929]
[61]
Franzmeier, N.; Neitzel, J.; Rubinski, A.; Smith, R.; Strandberg, O.; Ossenkoppele, R.; Hansson, O.; Ewers, M. Functional brain architec-ture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat. Commun., 2020, 11(1), 1-17.
[PMID: 31911652]
[62]
Porcellotti, S.; Fanelli, F.; Fracassi, A.; Sepe, S.; Cecconi, F.; Bernardi, C.; Cimini, A.; Cerù, M.P.; Moreno, S. Oxidative stress during the progression of β-amyloid pathology in the neocortex of the tg2576 mouse model of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 967203.
[http://dx.doi.org/10.1155/2015/967203]
[63]
Fracassi, A.; Marcatti, M.; Zolochevska, O.; Tabor, N.; Woltjer, R.; Moreno, S.; Taglialatela, G. Oxidative damage and antioxidant re-sponse in frontal cortex of demented and nondemented individuals with Alzheimer’s neuropathology. J. Neurosci., 2021, 41(3), 538-554.
[http://dx.doi.org/10.1523/JNEUROSCI.0295-20.2020] [PMID: 33239403]
[64]
Yao, J.; Irwin, R.W.; Zhao, L.; Nilsen, J.; Hamilton, R.T.; Brinton, R.D. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14670-14675.
[http://dx.doi.org/10.1073/pnas.0903563106] [PMID: 19667196]
[65]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiolo-gy. Biochim. Biophys. Acta, 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[66]
Adav, S.S.; Park, J.E.; Sze, S.K. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer’s disease. Mol. Brain, 2019, 12(1), 8.
[http://dx.doi.org/10.1186/s13041-019-0430-y] [PMID: 30691479]
[67]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigen-desch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[68]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alz-heimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4, 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[69]
Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol., 2018, 9, 1192.
[http://dx.doi.org/10.3389/fphar.2018.01192] [PMID: 30405413]
[70]
Shinotoh, H.; Namba, H.; Fukushi, K.; Nagatsuka, S.; Tanaka, N.; Aotsuka, A.; Tanada, S.; Irie, T. Brain acetylcholinesterase activity in Alzheimer disease measured by positron emission tomography. Alzheimer Dis. Assoc. Disord., 2000, 14(Suppl. 1), S114-S118.
[http://dx.doi.org/10.1097/00002093-200000001-00017] [PMID: 10850739]
[71]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 728983.
[http://dx.doi.org/10.1155/2012/728983]
[72]
Mufamadi, M.S.; Choonara, Y.E.; Kumar, P.; Modi, G.; Naidoo, D.; van Vuuren, S.; Ndesendo, V.M.K.; Toit, L.C.D.; Iyuke, S.E.; Pillay, V. Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int. J. Pharm., 2013, 448(1), 267-281.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.037] [PMID: 23535346]
[73]
Yang, Z.Z.; Zhang, Y.Q.; Wang, Z.Z.; Wu, K.; Lou, J.N.; Qi, X.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int. J. Pharm., 2013, 452(1-2), 344-354.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[74]
Sarfaraz, M.; Goel, T.; Doddayya, H. Formulation and evaluation of galantamine hydrobromide proniosome gel for Alzheimer’s disease. J. Drug Deliv. Ther., 2020, 10(2-s), 68-74.
[http://dx.doi.org/10.22270/jddt.v10i2-s.4027]
[75]
Fagiani, F.; Lanni, C.; Racchi, M.; Govoni, S. (Dys)regulation of synaptic activity and neurotransmitter release by β-amyloid: A look be-yond Alzheimer’s disease pathogenesis. Front. Mol. Neurosci., 2021, 14, 635880.
[http://dx.doi.org/10.3389/fnmol.2021.635880] [PMID: 33716668]
[76]
Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: structure, biology and structure-based thera-peutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[77]
Portelius, E.; Bogdanovic, N.; Gustavsson, M.K.; Volkmann, I.; Brinkmalm, G.; Zetterberg, H.; Winblad, B.; Blennow, K.; Zetterberg, H.; Winblad, B.; Blennow, K. Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alz-heimer’s disease. Acta Neuropathol., 2010, 120(2), 185-193.
[http://dx.doi.org/10.1007/s00401-010-0690-1] [PMID: 20419305]
[78]
Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2019, 15(2), 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[79]
Mo, J.J.; Li, J.Y.; Yang, Z.; Liu, Z.; Feng, J.S. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: A systematic review and network meta-analysis. Ann. Clin. Transl. Neurol., 2017, 4(12), 931-942.
[http://dx.doi.org/10.1002/acn3.469] [PMID: 29296624]
[80]
Šimić, G.; Babić Leko, M.; Wray, S.; Harrington, C.; Delalle, I.; Jovanov-Milošević, N.; Bažadona, D.; Buée, L.; de Silva, R.; Di Giovanni, G.; Wischik, C.; Hof, P.R. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules, 2016, 6(1), 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[81]
Kimura, T.; Hatsuta, H.; Masuda-Suzukake, M.; Hosokawa, M.; Ishiguro, K.; Akiyama, H.; Murayama, S.; Hasegawa, M.; Hisanaga, S. The abundance of nonphosphorylated tau in mouse and human tauopathy brains revealed by the use of phos-tag method. Am. J. Pathol., 2016, 186(2), 398-409.
[http://dx.doi.org/10.1016/j.ajpath.2015.10.009] [PMID: 26687814]
[82]
Wischik, C.M.; Staff, R.T.; Wischik, D.J.; Bentham, P.; Murray, A.D.; Storey, J.M.D.; Kook, K.A.; Harrington, C.R. Tau aggregation inhibi-tor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J. Alzheimers Dis., 2015, 44(2), 705-720.
[http://dx.doi.org/10.3233/JAD-142874] [PMID: 25550228]
[83]
Kumar, N.S.; Nisha, N. Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer’s disease. Chin. J. Nat. Med., 2014, 12(11), 801-818.
[http://dx.doi.org/10.1016/S1875-5364(14)60122-9] [PMID: 25480511]
[84]
Paul, R.; Nath, J.; Paul, S.; Mazumder, M.K.; Phukan, B.C.; Roy, R.; Bhattacharya, P.; Borah, A. Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochem. Int., 2021, 148(148), 105068.
[http://dx.doi.org/10.1016/j.neuint.2021.105068] [PMID: 34022252]
[85]
Tong-Un, T.; Muchimapura, S.; Wattanathorn, J.; Phachonpai, W. Nasal administration of quercetin liposomes improves memory impair-ment and neurodegeneration in animal model of Alzheimer’s disease. Am. J. Agric. Biol. Sci., 2010, 5(3), 286-293.
[http://dx.doi.org/10.3844/ajabssp.2010.286.293]
[86]
Sokolik, V.V.; Berchenko, O.G.; Shulga, S.M. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer’s disease model. J. Alzheimer’s Dis. Park., 2017, 7(4), 357.
[87]
Kuo, Y.C.; Lou, Y.I.; Rajesh, R. Dual Functional Liposomes Carrying Antioxidants Against Tau Hyperphosphorylation and Apoptosis of Neurons; Taylor & Francis: Oxfordshire, UK, 2020.
[88]
Kong, L.; Li, X.T.; Ni, Y.N.; Xiao, H.H.; Yao, Y.J.; Wang, Y.Y.; Ju, R.J.; Li, H.Y.; Liu, J.J.; Fu, M.; Wu, Y.T.; Yang, J.X.; Cheng, L. Trans-ferrin-modified osthole pegylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice. Int. J. Nanomedicine, 2020, 15, 2841-2858.
[http://dx.doi.org/10.2147/IJN.S239608] [PMID: 32425521]
[89]
Mourtas, S.; Lazar, A.N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S.G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem., 2014, 80, 175-183.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.050] [PMID: 24780594]
[90]
Kuo, Y.C.; Chen, I.Y.; Rajesh, R. Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J. Taiwan Inst. Chem. Eng., 2018, 87, 1-14.
[http://dx.doi.org/10.1016/j.jtice.2018.03.001]
[91]
Kuo, Y.C.; Ng, I.W.; Rajesh, R. Glutathione- and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer’s disease. Mater. Sci. Eng. C, 2021, 127, 112233.
[http://dx.doi.org/10.1016/j.msec.2021.112233] [PMID: 34225874]
[92]
Qi, Y.; Guo, L.; Jiang, Y.; Shi, Y.; Sui, H.; Zhao, L. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv., 2020, 27(1), 745-755.
[http://dx.doi.org/10.1080/10717544.2020.1762262] [PMID: 32397764]
[93]
Canovi, M.; Markoutsa, E.; Lazar, A.N.; Pampalakis, G.; Clemente, C.; Re, F.; Sesana, S.; Masserini, M.; Salmona, M.; Duyckaerts, C.; Flores, O.; Gobbi, M.; Antimisiaris, S.G. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials, 2011, 32(23), 5489-5497.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.020] [PMID: 21529932]
[94]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.,, 2016, 99((Pt A),), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[95]
Ren, H.; He, Y.; Liang, J.; Cheng, Z.; Zhang, M.; Zhu, Y.; Hong, C.; Qin, J.; Xu, X.; Wang, J. Role of liposome size, surface charge, and pegylation on rheumatoid arthritis targeting therapy. ACS Appl. Mater. Interfaces, 2019, 11(22), 20304-20315.
[http://dx.doi.org/10.1021/acsami.8b22693] [PMID: 31056910]
[96]
Gunay, M.S.; Ozer, A.Y.; Erdogan, S.; Bodard, S.; Baysal, I.; Gulhan, Z.; Guilloteau, D.; Chalon, S. Development of nanosized, pramipex-ole-encapsulated liposomes and niosomes for the treatment of Parkinson’s disease. J. Nanosci. Nanotechnol., 2017, 17(8), 5155-5167.
[http://dx.doi.org/10.1166/jnn.2017.13799]
[97]
Muhs, A.; Hickman, D.T.; Pihlgren, M.; Chuard, N.; Giriens, V.; Meerschman, C.; van der Auwera, I.; van Leuven, F.; Sugawara, M.; Weingertner, M.C.; Bechinger, B.; Greferath, R.; Kolonko, N.; Nagel-Steger, L.; Riesner, D.; Brady, R.O.; Pfeifer, A.; Nicolau, C. Liposo-mal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9810-9815.
[http://dx.doi.org/10.1073/pnas.0703137104] [PMID: 17517595]
[98]
Hasan, M.; Ben Messaoud, G.; Michaux, F.; Tamayol, A.; Kahn, C.J.F.; Belhaj, N.; Linder, M.; Arab-Tehrany, E. Chitosan-coated lipo-somes encapsulating curcumin: study of lipid-polysaccharide interactions and nanovesicle behavior. RSC Adv., 2016, 6(51), 45290-45304.
[http://dx.doi.org/10.1039/C6RA05574E]
[99]
Nageeb El-Helaly, S.; Abd Elbary, A.; Kassem, M.A.; El-Nabarawi, M.A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[100]
Saraswathi, T.S.; Mothilal, M. Development of rivastigmine loaded self assembled nanostructures of nonionic surfactants for brain deliv-ery. Int. J. Appl. Pharm., 2021, 13(5), 205-215.
[101]
Salehi, S.; Noubakhsh, M.S.; Yousefpur, M.; Rajabzadeh, G.; Negah, S.S. Preparation, physicochemical properties, in vitro and in vivo release evaluation of chitosan decorated curcumin loaded niosome. Research Square, 2021, 1-18.
[102]
Kulkarni, P.; Rawtani, D.; Barot, T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl Cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2021, 163, 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.015] [PMID: 33774160]
[103]
Rompicherla, S.K.L.; Arumugam, K.; Bojja, S.L.; Kumar, N.; Rao, C.M. Pharmacokinetic and pharmacodynamic evaluation of nasal lipo-some and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(8), 1737-1755.
[http://dx.doi.org/10.1007/s00210-021-02096-0] [PMID: 34086100]
[104]
Phachonpai, W.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Preechagoon, D. Neuroprotective effect of quercetin encapsulated lipo-somes: A novel therapeutic strategy against Alzheimer’s disease. Am. J. Appl. Sci., 2010, 7(4), 480-485.
[http://dx.doi.org/10.3844/ajassp.2010.480.485]
[105]
Homayun, B.; Lin, X.; Choi, H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 2019, 11(3), E129.
[http://dx.doi.org/10.3390/pharmaceutics11030129] [PMID: 30893852]
[106]
Xu, J.; Tao, J.; Wang, J. Design and application in delivery system of intranasal antidepressants. Front. Bioeng. Biotechnol., 2020, 8, 626882.
[http://dx.doi.org/10.3389/fbioe.2020.626882] [PMID: 33409272]
[107]
Dechant, J.E. in:Complications of parenteral administration of drugs.In: Rubio-Martinez, L.M.; Hendrickson, D.A.; Eds.in: Complications in Equine Surgery;; , 2021, pp. 10-15.
[108]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release, 2018, 281, 139-177.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[109]
Arumugam, K.; Subramanian, G.S.; Mallayasamy, S.R.; Averineni, R.K.; Reddy, M.S.; Udupa, N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm., 2008, 58(3), 287-297.
[http://dx.doi.org/10.2478/v10007-008-0014-3] [PMID: 19103565]
[110]
Ismail, M.F.; Elmeshad, A.N.; Salem, N.A.H. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alz-heimer’s disease. Int. J. Nanomedicine, 2013, 8, 393-406.
[http://dx.doi.org/10.2147/IJN.S39232] [PMID: 23378761]
[111]
Mufamadi, M.S.; Kumar, P.; du Toit, L.C.; Choonara, Y.E.; Obulapuram, P.K.; Modi, G.; Naidoo, D.; Iyuke, S.E.; Pillay, V. Liposome-embedded, polymeric scaffold for extended delivery of galantamine. J. Drug Deliv. Sci. Technol., 2019, 50, 255-265.
[http://dx.doi.org/10.1016/j.jddst.2019.02.001]
[112]
Carrera, I.; Etcheverría, I.; Fernández-Novoa, L.; Lombardi, V.R.M.; Lakshmana, M.K.; Cacabelos, R.; Vigo, C. A comparative evalua-tion of a novel vaccine in APP/PS1 mouse models of Alzheimer’s disease. Biomed Res. Int., 2015, 2015, 807146.
[113]
Theunis, C.; Crespo-Biel, N.; Gafner, V.; Pihlgren, M.; López-Deber, M.P.; Reis, P.; Hickman, D.T.; Adolfsson, O.; Chuard, N.; Ndao, D.M.; Borghgraef, P.; Devijver, H.; Van Leuven, F.; Pfeifer, A.; Muhs, A. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One, 2013, 8(8), e72301.
[http://dx.doi.org/10.1371/journal.pone.0072301] [PMID: 23977276]
[114]
Aggidis, A.; Chatterjee, S.; Townsend, D.; Fullwood, N.J.; Ruiz, E.; Tarutani, A.; Hasegawa, M.; Lucas, H.; Mudher, A. Peptide-based inhibitors of tau aggregation as a potential therapeutic for Alzheimer’s disease and other tauopathies. bioRxiv, 2021.
[115]
Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; Salehi, B.; Setzer, W.N.; Dosoky, N.S.; Taheri, Y.; El Beyrouthy, M.; Martorell, M.; Ostrander, E.A.; Suleria, H.A.R.; Cho, W.C.; Maroyi, A.; Martins, N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, bio-technological and medicinal applications. Front. Pharmacol., 2020, 11, 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[116]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[117]
Fernandes, M.; Lopes, I.; Magalhães, L.; Sárria, M.P.; Machado, R.; Sousa, J.C.; Botelho, C.; Teixeira, J.; Gomes, A.C. Novel concept of exosome-like liposomes for the treatment of Alzheimer’s disease. J. Control. Release, 2021, 336, 130-143.
[http://dx.doi.org/10.1016/j.jconrel.2021.06.018] [PMID: 34126168]
[118]
Taylor, M.; Moore, S.; Mourtas, S.; Niarakis, A.; Re, F.; Zona, C.; La Ferla, B.; Nicotra, F.; Masserini, M.; Antimisiaris, S.G.; Gregori, M.; Allsop, D. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine , 2011, 7(5), 541-550.
[http://dx.doi.org/10.1016/j.nano.2011.06.015] [PMID: 21722618]
[119]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), E1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[120]
Batiha, G.E.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacologi-cal activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), E374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[121]
Yi, H.; Peng, H.; Wu, X.; Xu, X.; Kuang, T.; Zhang, J.; Du, L.; Fan, G. The therapeutic effects and mechanisms of quercetin on metabolic diseases: Pharmacological data and clinical evidence. Oxid. Med. Cell. Longev., 2021, 2021, 6678662.
[122]
Zhang, Z.R.; Leung, W.N.; Cheung, H.Y.; Chan, C.W. Osthole: A review on its bioactivities, pharmacological properties, and potential as alternative medicine. Evidence-based Complement. Altern. Med., 2015, 2015, 919616.
[123]
Sun, M.; Sun, M.; Zhang, J. Osthole: An overview of its sources, biological activities, and modification development. Med. Chem. Res., 2021, 30(10), 1-28.
[http://dx.doi.org/10.1007/s00044-021-02775-w] [PMID: 34376964]
[124]
Bhatt, R.; Mishra, N.; Bansal, P.K. Phytochemical, pharmacological and pharmacokinetics effects of rosmarinic acid. J. Pharm. Sci. Innov., 2013, 2(2), 28-34.
[http://dx.doi.org/10.7897/2277-4572.02215]
[125]
Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, R.M.; Sajid, M.W. Qaisrani, T.B.; Atif, M.; Hussain, G.; Salehi, B.; Ostrander, E.A.; Martorell, M.; Sharifi-Rad, J.; Cho, W.C.; Martins, N. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. (Basel), 2019, 9(15), 3139.
[126]
Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J., 2016, 15(1), 60.
[http://dx.doi.org/10.1186/s12937-016-0179-4] [PMID: 27268025]
[127]
Anand, A.; Chawla, J.; Mahajan, A.; Sharma, N.; Khurana, N. Therapeutic potential of epigallocatechin gallate. Int. J. Green Pharm., 2017, 11(3), S364-S370.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy