Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Na+/HCO3 Co-transporters Inhibitor S0859 Attenuates Global Cerebral Ischemia-reperfusion Injury of the CA1 Neurons in the Gerbil’s Hippocampus

Author(s): Meng Jia, Qian Zhang, Xi Guo, Ru Liu, Sha Liu, Nanyu Chen, Yunfu Wang, Qun Wang, Jianping Wu* and Susan L. Campbell

Volume 22, Issue 7, 2023

Published on: 22 July, 2022

Page: [1109 - 1119] Pages: 11

DOI: 10.2174/1871527321666220517121135

Price: $65

conference banner
Abstract

Background: Metabolic acidosis plays a key role in transient global cerebral ischemiareperfusion (I/R) induced delayed neuronal death (DND) of the hippocampal CA1 region of gerbils. Na+ coupled HCO3 - transporters (NBCs) mediated Na+/HCO3 - co-transportation can be activated by the pH gradient of intracellular and extracellular environments induced by acidosis. However, whether NBCs are activated and involved in I/R-induced neuronal injury is unknown.

Objective: In this work, we studied neuronal apoptosis, astrocyte activation, and hippocampusdependent memory task using a well-established transient global cerebral I/R model of gerbils and investigated whether the specific NBCs inhibitor S0859 could reverse this injury.

Methods: To explore the role of S0859 in I/R-induced DND, we established a transient global cerebral I/R model of Mongolian gerbils and studied neuronal apoptosis by using Nissl stain and TUNEL assay. The excitability and NBCs current were analyzed by whole-cell patch-clamp, while the cognitive function was evaluated by Barnes maze.

Results: We found that I/R increased the NBCs current, inhibited the excitability of CA1 neurons, and led to apoptosis in CA1 neurons. Selective NBCs inhibitor S0859 protected CA1 neurons from I/R induced neuronal cell death, astrocyte accumulation, and spatial memory impairment.

Conclusion: These findings indicate that NBCs mediate transient global cerebral I/R induced DND of CA1 neurons, and NBCs inhibitors could be a promising target to protect neuronal functions after I/R.

Keywords: Cerebral I/R, Na+/HCO3 co-transporter, delayed neuronal death, S0859, hippocampus, whole-cell patch clamp.

Graphical Abstract
[1]
Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20(10): 795-820.
[http://dx.doi.org/10.1016/S1474-4422(21)00252-0] [PMID: 34487721]
[2]
Lee TK, Lee JC, Kim DW, et al. Ischemia-Reperfusion under hyperthermia increases heme oxygenase-1 in pyramidal neurons and astrocytes with accelerating neuronal loss in gerbil hippocampus. Int J Mol Sci 2021; 22(8): 3963.
[http://dx.doi.org/10.3390/ijms22083963] [PMID: 33921375]
[3]
Martínez NS, Machado JM, Pérez-Saad H, et al. Global brain ischemia in Mongolian gerbils: assessing the level of anastomosis in the cerebral circle of Willis. Acta Neurobiol Exp (Warsz) 2012; 72(4): 377-84.
[PMID: 23377268]
[4]
Levine S, Sohn D. Cerebral ischemia in infant and adult gerbils. Relation to incomplete circle of Willis. Arch Pathol 1969; 87(3): 315-7.
[PMID: 5766257]
[5]
Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239(1): 57-69.
[http://dx.doi.org/10.1016/0006-8993(82)90833-2] [PMID: 7093691]
[6]
Kirino T, Sano K. Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 1984; 62(3): 201-8.
[http://dx.doi.org/10.1007/BF00691853] [PMID: 6695554]
[7]
Gu L, Liu X, Yang Y, Luo D, Zheng X. ASICs aggravate acidosis-induced injuries during ischemic reperfusion. Neurosci Lett 2010; 479(1): 63-8.
[http://dx.doi.org/10.1016/j.neulet.2010.05.029] [PMID: 20478356]
[8]
Levine RL. Ischemia: from acidosis to oxidation. FASEB J 1993; 7(13): 1242-6.
[http://dx.doi.org/10.1096/fasebj.7.13.8405809] [PMID: 8405809]
[9]
Back T, Hoehn M, Mies G, et al. Penumbral tissue alkalosis in focal cerebral ischemia: relationship to energy metabolism, blood flow, and steady potential. Ann Neurol 2000; 47(4): 485-92.
[http://dx.doi.org/10.1002/1531-8249(200004)47:4<485:AID-ANA12>3.0.CO;2-8] [PMID: 10762160]
[10]
Pagel PS, Krolikowski JG. Transient metabolic alkalosis during early reperfusion abolishes helium preconditioning against myocardial infarction: restoration of cardioprotection by cyclosporin A in rabbits. Anesth Analg 2009; 108(4): 1076-82.
[http://dx.doi.org/10.1213/ane.0b013e318193e934] [PMID: 19299764]
[11]
Vande Linde AM, Chopp M, Lee SA, Schultz LR, Welch KM. Post-ischemic brain tissue alkalosis suppressed by U74006F. J Neurol Sci 1993; 114(1): 36-9.
[http://dx.doi.org/10.1016/0022-510X(93)90045-Z] [PMID: 8433095]
[12]
Boron WF. Chapter 52-control of intracellular ph: seldin and geibisch's the kidney. In: Elsevier Inc. 2012.
[13]
Mcalear SD, Bevensee MO. pH regulation in non-neuronal brain cells and interstitial fluid. Adv Mol Cell Biol 2003; 31: 707-45.
[http://dx.doi.org/10.1016/S1569-2558(03)31032-X]
[14]
Schwiening CJ, Boron WF, Boron WF, Bing Z, Le Bars D. Regulation of intracellular pH in pyramidal neurones from the rat hippocampus by Na+-dependent Cl+-HCO3- exchange. J Physiol 1994; 475(1): 59-67.
[http://dx.doi.org/10.1113/jphysiol.1994.sp020049] [PMID: 8189393]
[15]
Cooper DS, Yang HS, He P, et al. Sodium/bicarbonate cotransporter NBCn1/slc4a7 increases cytotoxicity in magnesium depletion in primary cultures of hippocampal neurons. Eur J Neurosci 2009; 29(3): 437-46.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06611.x] [PMID: 19170751]
[16]
Dietz RM, Kiedrowski L, Shuttleworth CW. Contribution of Na+/Ca2+ exchange to excessive Ca2+ loading in dendrites and somata of CA1 neurons in acute slice. Hippocampus 2007; 17(11): 1049-59.
[http://dx.doi.org/10.1002/hipo.20336] [PMID: 17598158]
[17]
Pignataro G, Sirabella R, Anzilotti S, Di Renzo G, Annunziato L. Does Na⁺/Ca²⁺ exchanger, NCX, represent a new druggable target in stroke intervention? Transl Stroke Res 2014; 5(1): 145-55.
[http://dx.doi.org/10.1007/s12975-013-0308-8] [PMID: 24323727]
[18]
Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H⁺- activated Na⁺ influx in the ventricular myocyte couples Ca²⁺- signalling to intracellular pH. J Mol Cell Cardiol 2013; 61: 51-9.
[http://dx.doi.org/10.1016/j.yjmcc.2013.04.008] [PMID: 23602948]
[19]
Lu M, Jia M, Wang Q, et al. The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci 2021; 270: 119153.
[http://dx.doi.org/10.1016/j.lfs.2021.119153] [PMID: 33539911]
[20]
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93(2): 803-959.
[http://dx.doi.org/10.1152/physrev.00023.2012] [PMID: 23589833]
[21]
Sohn Y, Yoo KY, Park OK, et al. Na+/HCO3- cotransporter immunoreactivity changes in neurons and expresses in astrocytes in the gerbil hippocampal CA1 region after ischemia/reperfusion. Neurochem Res 2011; 36(12): 2459-69.
[http://dx.doi.org/10.1007/s11064-011-0572-5] [PMID: 21833843]
[22]
Choi I, Aalkjaer C, Boulpaep EL, Boron WF. An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature 2000; 405(6786): 571-5.
[http://dx.doi.org/10.1038/35014615] [PMID: 10850716]
[23]
Oehlke O, Speer JM, Roussa E. Variants of the electrogenic sodium bicarbonate cotransporter 1 (NBCe1) in mouse hippocampal neurons are regulated by extracellular pH changes: Evidence for a Rab8a-dependent mechanism. Int J Biochem Cell Biol 2013; 45(7): 1427-38.
[http://dx.doi.org/10.1016/j.biocel.2013.04.008] [PMID: 23583738]
[24]
Giffard RG, Papadopoulos MC, van Hooft JA, Xu L, Giuffrida R, Monyer H. The electrogenic sodium bicarbonate cotransporter: Developmental expression in rat brain and possible role in acid vulnerability. J Neurosci 2000; 20(3): 1001-8.
[http://dx.doi.org/10.1523/JNEUROSCI.20-03-01001.2000] [PMID: 10648705]
[25]
Ch’en FF, Villafuerte FC, Swietach P, Cobden PM, Vaughan-Jones RD. S0859, an N-cyanosulphonamide inhibitor of sodium-bicarbonate cotransport in the heart. Br J Pharmacol 2008; 153(5): 972-82.
[http://dx.doi.org/10.1038/sj.bjp.0707667] [PMID: 18204485]
[26]
Fantinelli JC, Orlowski A, Aiello EA, Mosca SM. The electrogenic cardiac sodium bicarbonate co-transporter (NBCe1) contributes to the reperfusion injury. Cardiovasc Pathol 2014; 23(4): 224-30.
[http://dx.doi.org/10.1016/j.carpath.2014.03.003] [PMID: 24721237]
[27]
Majumdar D, Maunsbach AB, Shacka JJ, et al. Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience 2008; 155(3): 818-32.
[http://dx.doi.org/10.1016/j.neuroscience.2008.05.037] [PMID: 18582537]
[28]
Bevensee MO, Schmitt BM, Choi I, Romero MF, Boron WF. An electrogenic Na+/HCO3- cotransporter (NBC) with a novel COOH-terminus, cloned from rat brain. Am J Physiol Cell Physiol 2000; 278(6): C1200-11.
[http://dx.doi.org/10.1152/ajpcell.2000.278.6.C1200] [PMID: 10837348]
[29]
Ma H, Wang N, Wang X, Jia M, Li Y, Cui C. Wnt7a in mouse insular cortex contributes to anxiety-like behavior during protracted abstinence from morphine. Neuroscience 2018; 394: 164-76.
[http://dx.doi.org/10.1016/j.neuroscience.2018.10.032] [PMID: 30367944]
[30]
Zhang H, Jia M, Wang XW, et al. Dentate gyrus μ-opioid receptor-mediated neurogenic processes are associated with alterations in morphine self-administration. Sci Rep 2019; 9(1): 1471.
[http://dx.doi.org/10.1038/s41598-018-37083-8] [PMID: 30728362]
[31]
Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J 2003; 44(2): 85-95.
[http://dx.doi.org/10.1093/ilar.44.2.85] [PMID: 12652003]
[32]
Romero MF, Fulton CM, Boron WF. The SLC4 family of HCO3- transporters. Pflugers Arch 2004; 447(5): 495-509.
[http://dx.doi.org/10.1007/s00424-003-1180-2] [PMID: 14722772]
[33]
Schmitt BM, Berger UV, Douglas RM, et al. Na/HCO3 cotransporters in rat brain: expression in glia, neurons, and choroid plexus. J Neurosci 2000; 20(18): 6839-48.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06839.2000] [PMID: 10995828]
[34]
Romero MF, Fong P, Berger UV, Hediger MA, Boron WF. Cloning and functional expression of rNBC, an electrogenic Na+-HCO3- cotransporter from rat kidney. Am J Physiol 1998; 274(2): F425-32.
[PMID: 9486238]
[35]
Burnham CE, Amlal H, Wang Z, Shull GE, Soleimani M. Cloning and functional expression of a human kidney Na+/HCO3- cotransporter. J Biol Chem 1997; 272(31): 19111-4.
[http://dx.doi.org/10.1074/jbc.272.31.19111] [PMID: 9235899]
[36]
Romero MF, Hediger MA, Boulpaep EL, Boron WF. Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter. Nature 1997; 387(6631): 409-13.
[http://dx.doi.org/10.1038/387409a0] [PMID: 9163427]
[37]
Liu H, Wu X, Luo J, et al. Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-κB phosphorylation. Front Immunol 2019; 10: 2408.
[http://dx.doi.org/10.3389/fimmu.2019.02408] [PMID: 31681297]
[38]
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2016; 144: 103-20.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.008] [PMID: 26455456]
[39]
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol 2019; 18(11): 1058-66.
[http://dx.doi.org/10.1016/S1474-4422(19)30078-X] [PMID: 31296369]
[40]
Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev 1999; 79(3): 763-854.
[http://dx.doi.org/10.1152/physrev.1999.79.3.763] [PMID: 10390518]
[41]
Hilgemann DW. New insights into the molecular and cellular workings of the cardiac Na+/Ca2+ exchanger. Am J Physiol Cell Physiol 2004; 287(5): C1167-72.
[http://dx.doi.org/10.1152/ajpcell.00288.2004] [PMID: 15475515]
[42]
Philipson KD, Nicoll DA. Sodium-calcium exchange: A molecular perspective. Annu Rev Physiol 2000; 62(1): 111-33.
[http://dx.doi.org/10.1146/annurev.physiol.62.1.111] [PMID: 10845086]
[43]
Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. Stroke 2007; 38(2) (Suppl.): 674-6.
[http://dx.doi.org/10.1161/01.STR.0000256294.46009.29] [PMID: 17261713]
[44]
Sabah NH. Origin of the resting potential. IEEE Eng Med Biol Mag 1999; 18(5): 100-5.
[http://dx.doi.org/10.1109/51.790992] [PMID: 10497743]
[45]
Skou JC, Esmann M. The Na,K-ATPase. J Bioenerg Biomembr 1992; 24(3): 249-61.
[PMID: 1328174]
[46]
Jung YW, Choi IJ, Kwon TH. Altered expression of sodium transporters in ischemic penumbra after focal cerebral ischemia in rats. Neurosci Res 2007; 59(2): 152-9.
[http://dx.doi.org/10.1016/j.neures.2007.06.1470] [PMID: 17662498]
[47]
Wu J, McNicholas CM, Bevensee MO. Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proc Natl Acad Sci USA 2009; 106(33): 14150-5.
[http://dx.doi.org/10.1073/pnas.0906303106] [PMID: 19667194]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy