Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Developments and Potential for Clinical Use of Casein as a Drug Carrier

Author(s): Ravindra Semwal, Sunil Kumar Joshi, Ruchi Badoni Semwal and Deepak Kumar Semwal*

Volume 20, Issue 3, 2023

Published on: 13 July, 2022

Page: [250 - 260] Pages: 11

DOI: 10.2174/1567201819666220513085552

Price: $65

Abstract

Background: The development of drug delivery carriers is the key area of research in the field of novel drug delivery systems. To date, a long list of carriers has been identified for this purpose but the deliveries of poorly water-soluble active substances are still facing challenges and hence, such substances are pharmacologically unsafe and economically incompetent.

Objective: This article aims to review the applications of casein as a drug carrier and its potential for clinical use.

Methods: The relevant literature on the casein protein was collected from authentic online scientific databases like PubMed, Scopus and Google Scholar using different keywords including “casein”, “drug delivery system”, “drug carrier” and “bioavailability”. The articles and books accessed online have been thoroughly reviewed and the most relevant reports on casein as a drug carrier have only been included in the present study.

Results: Casein is a milk protein that has many structural and physicochemical properties which facilitate its functionality in delivery systems. Moreover, its amphiphilic nature makes it the most suitable carrier for both hydrophobic and hydrophilic drugs without showing any toxic effects. The carriers obtained from natural sources are trustworthy over synthetic carriers and in the demand of the market due to their easy availability, low-cost factor, bio-friendly and nontoxic nature.

Conclusion: Casein was found to be an effective natural drug carrier in various delivery systems due to its unique applications in improving the bioavailability and efficacy of a drug.

Keywords: Casein, drug delivery system, nanoparticles, hydrogel, micelles, bioavailability

Graphical Abstract
[1]
Svenson, S. Carrier-Based Drug Delivery In:; American Chemical Society: Washington, DC, 2004, p. 4.
[http://dx.doi.org/10.1021/bk-2004-0879]
[2]
Solakivi, T.; Ojala, L. Determinants of carrier selection: Updating the survey methodology into the 21st century. Transp. Res. Procedia, 2017, 25, 511-530.
[http://dx.doi.org/10.1016/j.trpro.2017.05.433]
[3]
Głąb, T.K.; Boratyński, J. Potential of casein as a carrier for biologically active agents. Top. Curr. Chem. (Cham), 2017, 375(4), 71.
[http://dx.doi.org/10.1007/s41061-017-0158-z] [PMID: 28712055]
[4]
Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein based nanostructures for drug delivery. J. Pharm. (Cairo), 2018, 2018, 9285854.
[http://dx.doi.org/10.1155/2018/9285854] [PMID: 29862118]
[5]
Elzoghby, A.O.; El-Fotoh, W.S.; Elgindy, N.A. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release, 2011, 153(3), 206-216.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.010] [PMID: 21338636]
[6]
Holt, C.; Carver, J.A.; Ecroyd, H.; Thorn, D.C. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. J. Dairy Sci., 2013, 96(10), 6127-6146.
[http://dx.doi.org/10.3168/jds.2013-6831] [PMID: 23958008]
[7]
Fox, P.F.; Brodkorb, A. The casein micelle: Historical aspects, current concepts and significance. Int. Dairy J., 2008, 18(7), 677-684.
[http://dx.doi.org/10.1016/j.idairyj.2008.03.002]
[8]
Eskin, N.A.M.; Goff, H.D. Milk. In: Biochemistry of Foods; Eskin, N.A.M.; Shahidi, F., Eds.; Academic Press: Cambridge, Massachusetts, 2013; pp. 187-214.
[http://dx.doi.org/10.1016/B978-0-08-091809-9.00004-2]
[9]
Artym, J.; Zimecki, M. Milk-derived proteins and peptides in clinical trials. Postepy Hig. Med. Dosw., 2013, 67, 800-816.
[http://dx.doi.org/10.5604/17322693.1061635] [PMID: 24018446]
[10]
Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F. Cryo-transmission electron tomography of native casein micelles from bovine milk. J. Dairy Sci., 2011, 94(12), 5770-5775.
[http://dx.doi.org/10.3168/jds.2011-4368] [PMID: 22118067]
[11]
Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition, 2014, 30(6), 619-627.
[http://dx.doi.org/10.1016/j.nut.2013.10.011] [PMID: 24800664]
[12]
Livney, Y.D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci., 2010, 15(1-2), 73-83.
[http://dx.doi.org/10.1016/j.cocis.2009.11.002]
[13]
Markovic, M.D.; Panic, V.V.; Seslija, S.I.; Milivojevic, A.D.; Spasojevic, P.M.; Boskovic-Vragolovic, N.M.; Pjanovic, R.V. Novel strategy for encapsulation and targeted delivery of poorly water-soluble active substances. Polym. Eng. Sci., 2020, 60(8), 2008-2022.
[http://dx.doi.org/10.1002/pen.25448]
[14]
Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int., 2014, 2014, 180549.
[http://dx.doi.org/10.1155/2014/180549] [PMID: 24772414]
[15]
Barick, K.C.; Tripathi, A.; Dutta, B.; Shelar, S.B.; Hassan, P.A. Curcumin encapsulated casein nanoparticles: Enhanced bioavailability and anticancer efficacy. J. Pharm. Sci., 2021, 110(5), 2114-2120.
[http://dx.doi.org/10.1016/j.xphs.2020.12.011] [PMID: 33338492]
[16]
Gandhi, S.; Roy, I. Doxorubicin-loaded casein nanoparticles for drug delivery: Preparation, characterization and in vitro evaluation. Int. J. Biol. Macromol., 2019, 121, 6-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.005] [PMID: 30290258]
[17]
Selvaraj, S.; Thangam, R.; Fathima, N.N. Electrospinning of casein nanofibers with silver nanoparticles for potential biomedical applications. Int. J. Biol. Macromol., 2018, 120(Pt B), 1674-1681.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.177] [PMID: 30268753]
[18]
El-Far, S.W.; Helmy, M.W.; Khattab, S.N.; Bekhit, A.A.; Hussein, A.A.; Elzoghby, A.O. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomedicine (Lond.), 2018, 13(5), 481-499.
[http://dx.doi.org/10.2217/nnm-2017-0301] [PMID: 29376765]
[19]
Shapira, A.; Markman, G.; Assaraf, Y.G.; Livney, Y.D. β-casein-based nanovehicles for oral delivery of chemotherapeutic drugs: Drug-protein interactions and mitoxantrone loading capacity. Nanomedicine, 2010, 6(4), 547-555.
[http://dx.doi.org/10.1016/j.nano.2010.01.003] [PMID: 20100598]
[20]
Reyhaneh, S.; Sadjadi, M.S.; Farhadyar, N.; Sajjadi, A.A.; Sadeghi, B. Synthesis and characterization of needle like hydroxyapatite nanoparticles using casein as a friendly matrix. Res. J. Biotechnol., 2017, 12(11), 17-20.
[21]
Cuggino, J.C.; Picchio, M.L.; Gugliotta, A.; Bürgi, M.; Ronco, L.I.; Calderón, M.; Etcheverrigaray, M.; Alvarez Igarzabal, C.I.; Minari, R.J.; Gugliotta, L.M. Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. Eur. Polym. J., 2021, 145, 110237.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110237]
[22]
Esmaili, M.; Dezhampanah, H.; Hadavi, M. Surface modification of super paramagnetic iron oxide nanoparticles via milk casein for potential use in biomedical areas. J. Biomol. Struct. Dyn., 2021, 39(3), 977-987.
[http://dx.doi.org/10.1080/07391102.2020.1722751] [PMID: 31989868]
[23]
Singh, A.; Bajpai, J.; Bajpai, A.K.; Mongre, R.K.; Lee, M.S. Encapsulation of cytarabine into Casein Coated Iron Oxide Nanoparticles (CCIONPs) and study of in vitro drug release and anticancer activities. J. Drug Deliv. Sci. Technol., 2020, 55, 101396.
[http://dx.doi.org/10.1016/j.jddst.2019.101396]
[24]
Singh Chauhan, P.; Abutbul Ionita, I.; Moshe Halamish, H.; Sosnik, A.; Danino, D. Multidomain drug delivery systems of β-casein micelles for the local oral co-administration of antiretroviral combinations. J. Colloid Interface Sci., 2021, 592, 156-166.
[http://dx.doi.org/10.1016/j.jcis.2020.12.021] [PMID: 33652169]
[25]
Sahu, A.; Kasoju, N.; Bora, U. Fluorescence study of the curcumincasein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules, 2008, 9(10), 2905-2912.
[http://dx.doi.org/10.1021/bm800683f] [PMID: 18785706]
[26]
Azarakhsh, F.; Divsalar, A.; Saboury, A.A.; Eidi, A. Simultaneous delivery of oxali-palladium and iron nanoparticles by β-casein. J. Mol. Liq., 2021, 333, 115999.
[http://dx.doi.org/10.1016/j.molliq.2021.115999]
[27]
Bar-Zeev, M.; Assaraf, Y.G.; Livney, Y.D. β-casein nanovehicles for oral delivery of chemotherapeutic Drug combinations overcoming Pglycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget, 2016, 7(17), 23322-23334.
[http://dx.doi.org/10.18632/oncotarget.8019] [PMID: 26989076]
[28]
Picchio, M.L.; Paredes, A.J.; Palma, S.D.; Passeggi, M.C.G.; Gugliotta, L.M.; Minari, R.J.; Igarzabal, C.I.A. pH-responsive casein-based films and their application as functional coatings in solid dosage formulations. Colloids Surf. A Physicochem. Eng., 2018, 541, 1-9.
[29]
Nascimento, L.G.L.; Casanova, F.; Silva, N.F.N.; Teixeira, A.V.N.C.; Carvalho, A.F. Casein-based hydrogels: A mini-review. Food Chem., 2020, 314, 126063.
[http://dx.doi.org/10.1016/j.foodchem.2019.126063] [PMID: 31951886]
[30]
Tundisi, L.L.; Yang, R.; Borelli, L.P.P.; Alves, T.; Mehta, M.; Chaud, M.V.; Mazzola, P.G.; Kohane, D.S. Enhancement of the mechanical and drug-releasing properties of poloxamer 407 hydrogels with casein. Pharm. Res., 2021, 38(3), 515-522.
[http://dx.doi.org/10.1007/s11095-021-03017-9] [PMID: 33638121]
[31]
Song, F.; Zhang, L.M.; Yang, C.; Yan, L. Genipin-crosslinked casein hydrogels for controlled drug delivery. Int. J. Pharm., 2009, 373(1-2), 41-47.
[http://dx.doi.org/10.1016/j.ijpharm.2009.02.005] [PMID: 19429286]
[32]
Rathor, S.; Ram, A. Floating drug delivery system as an approach to increase the gastric retention of methotrexate: Formulation and evaluation. Asian J. Pharm. Clin. Res., 2013, 6(1), 42-47.
[33]
Shruti, R.; Alpana, R. Formulation and characterization of an intragastric floating drug delivery system of doxorubicin hydrochloride: In vitro-in vivo release study. Asian J. Pharm. Clin. Res., 2012, 5, 150-158.
[34]
Bulgarelli, E.; Forni, F.; Bernabei, M.T. Effect of matrix composition and process conditions on casein-gelatin beads floating properties. Int. J. Pharm., 2000, 198(2), 157-165.
[http://dx.doi.org/10.1016/S0378-5173(00)00327-6] [PMID: 10767565]
[35]
Anter, H.M.; Abu Hashim, I.I.; Awadin, W.; Meshali, M.M. Novel anti-inflammatory film as a delivery system for the external medication with bioactive phytochemical “Apocynin”. Drug Des. Devel. Ther., 2018, 12, 2981-3001.
[http://dx.doi.org/10.2147/DDDT.S176850] [PMID: 30254427]
[36]
An, W.; Ma, J.; Xu, Q. The manufacture and characterization of casein films as novel tablet coatings. Food Bioprod. Process., 2007, 85(3C), 284-290.
[37]
Balaji, A.; Krishnaveni, B.; Goud, V. Formulation and evalution of mucoadhesive buccal films of atorvastatin using natural protein. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 332-337.
[38]
Cuggino, J.C.; Ambrosioni, F.E.; Picchio, M.L.; Nicola, M.; Jiménez Kairuz, Á.F.; Gatti, G.; Minari, R.J.; Calderón, M.; Alvarez Igarzabal, C.I.; Gugliotta, L.M. Thermally self-assembled biodegradable poly(casein-g-N-isopropylacrylamide) unimers and their application in drug delivery for cancer therapy. Int. J. Biol. Macromol., 2020, 154, 446-455.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.138] [PMID: 32194104]
[39]
Simão, A.R.; Fragal, V.H.; Lima, A.M.O.; Pellá, M.C.G.; Garcia, F.P.; Nakamura, C.V.; Tambourgi, E.B.; Rubira, A.F. pH-responsive hybrid hydrogels: Chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. Int. J. Biol. Macromol., 2020, 148, 302-315.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.093] [PMID: 31931066]
[40]
Priya, P.; Mohan Raj, R.; Vasanthakumar, V.; Raj, V. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arab. J. Chem., 2020, 13(1), 694-708.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.010]
[41]
Purushothaman, K.B.; Harsha, S.M.; Maheswari, P.U.; Sheriffa Begum, K.M.M. Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier. J. Drug Deliv. Sci. Technol., 2019, 52, 509-520.
[http://dx.doi.org/10.1016/j.jddst.2019.05.010]
[42]
Panja, S.; Khatua, D.K.; Halder, M. Effect of casein on pure lecithin liposome: Mixed biomacromolecular system for providing superior stabilization to hydrophobic molecules. Colloids Surf. B Biointerfaces, 2019, 180, 298-305.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.038] [PMID: 31071569]
[43]
Warsito; Noorhamdani, A.S.; S Ramadhan, D.; Yuliatin; Sari, K. Antibacterial efficacy of 2-citronellyl benzimidazole nanoencapsulation with chitosan-tripolyphosphate and casein micellar coatings. IOP Conf. Ser. Earth Environ. Sci., 2019, 299(1), 012019.
[http://dx.doi.org/10.1088/1755-1315/299/1/012019]
[44]
Vlaeva, I.; Pilicheva, B.; Marinova, A.; Bodurov, I.; Yovcheva, T.; Viraneva, A.; Exner, G.; Uzunova, Y.; Sotirov, S.; Marudova, M. Investigation of flexible polyelectrolyte multilayered structure by using different techniques. AIP Conf. Proc., 2019, 2075, 160007.
[http://dx.doi.org/10.1063/1.5091334]
[45]
Marudova, M.; Exner, G.; Pilicheva, B.; Marinova, A.; Viraneva, A.; Bodurov, I.; Sotirov, S.; Vlaeva, I.; Uzunova, Y.; Yovcheva, T. Effect of assembly pH and ionic strength of chitosan/casein multilayers on benzydamine hydrochloride release. Int. J. Polym. Mater., 2019, 68(1-3), 90-98.
[http://dx.doi.org/10.1080/00914037.2018.1525727]
[46]
Yovcheva, T.; Pilicheva, B.; Marinova, A.; Viraneva, A.; Bodurov, I.; Exner, G.; Sotirov, S.; Vlaeva, I.; Uzunova, Y.; Marudova, M. Crosslinked chitosan/casein polyelectrolyte multilayers for drug delivery. J. Phys. Conf. Ser., 2019, 1186(1), 012030.
[http://dx.doi.org/10.1088/1742-6596/1186/1/012030]
[47]
Bani-Jaber, A.; Alshawabkeh, I.; Abdullah, S.; Hamdan, I.; Ardakani, A.; Habash, M. In vitro and in vivo evaluation of casein as a drug carrier for enzymatically triggered dissolution enhancement from solid dispersions. AAPS PharmSciTech, 2017, 18(5), 1750-1759.
[http://dx.doi.org/10.1208/s12249-016-0650-8] [PMID: 27752935]
[48]
Turovsky, T.; Portnaya, I.; Kesselman, E.; Ionita-Abutbul, I.; Dan, N.; Danino, D. Effect of temperature and loading on the structure of β-casein/ibuprofen assemblies. J. Colloid Interface Sci., 2015, 449, 514-521.
[http://dx.doi.org/10.1016/j.jcis.2015.02.030] [PMID: 25754442]
[49]
Nadi, M.M.; Ashrafi Kooshk, M.R.; Mansouri, K.; Ghadami, S.A.; Amani, M.; Ghobadi, S.; Khodarahmi, R. Comparative spectroscopic studies on curcumin stabilization by association to bovine serum albumin and casein: A perspective on drug-delivery application. Int. J. Food Prop., 2015, 18(3), 638-659.
[http://dx.doi.org/10.1080/10942912.2013.853185]
[50]
Raj, J.; Uppuluri, K.B. Metformin loaded casein micelles for sustained delivery: Formulation, characterization and in-vitro evaluation. Biomed. Pharmacol. J., 2015, 8(1), 83-89.
[http://dx.doi.org/10.13005/bpj/585]
[51]
Li, N.N.; Fu, C.P.; Zhang, L.M. Using casein and oxidized hyaluronic acid to form biocompatible composite hydrogels for controlled drug release. Mater. Sci. Eng. C, 2014, 36(1), 287-293.
[http://dx.doi.org/10.1016/j.msec.2013.12.025] [PMID: 24433914]
[52]
Narayanan, S.; Pavithran, M.; Viswanath, A.; Narayanan, D.; Mohan, C.C.; Manzoor, K.; Menon, D. Sequentially releasing dual-drug-loaded PLGA-casein core/shell nanomedicine: Design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater., 2014, 10(5), 2112-2124.
[http://dx.doi.org/10.1016/j.actbio.2013.12.041] [PMID: 24389318]
[53]
Xu, S.; Yin, B.; Guo, J.; Wang, C. Biocompatible hollow magnetic supraparticles: Ultrafast microwave-assisted synthesis, casein-micelle-mediated cavity formation and controlled drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(33), 4079-4087.
[http://dx.doi.org/10.1039/c3tb20238k] [PMID: 32260960]
[54]
Elzoghby, A.O.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model. Pharm. Res., 2013, 30(10), 2654-2663.
[http://dx.doi.org/10.1007/s11095-013-1091-7] [PMID: 23739989]
[55]
Yin, W.; Su, R.; Qi, W.; He, Z. A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. J. Mater. Sci., 2012, 47(4), 2045-2055.
[http://dx.doi.org/10.1007/s10853-011-6005-7]
[56]
Shapira, A.; Assaraf, Y.G.; Epstein, D.; Livney, Y.D. Beta-casein nanoparticles as an oral delivery system for chemotherapeutic drugs: Impact of drug structure and properties on co-assembly. Pharm. Res., 2010, 27(10), 2175-2186.
[http://dx.doi.org/10.1007/s11095-010-0222-7] [PMID: 20703895]
[57]
Bajpai, S.K. Casein cross-linked polyacrylamide hydrogels: Study of swelling and drug release behaviour. Iran. Polym. J., 1999, 8(4), 231-239.
[58]
Price, G.; Patel, D.A. Drug Bioavailability; StatPearls Publishing: Treasure Island, FL, 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557852/
[59]
Yuan, Z.X.; Deng, S.; Chen, L.; Hu, Y.; Gu, J.; He, L. pH-driven entrapment of enrofloxacin in casein-based nanoparticles for the enhancement of oral bioavailability. Food Sci. Nutr., 2021, 9(8), 4057-4067.
[http://dx.doi.org/10.1002/fsn3.2224] [PMID: 34401057]
[60]
Liu, C.; Jiang, T.T.; Yuan, Z.X.; Lu, Y. Self-assembled casein nanoparticles loading triptolide for the enhancement of oral bioavailability. Nat. Prod. Commun., 2020, 15(8), 1-9.
[http://dx.doi.org/10.1177/1934578X20948352]
[61]
Chen, L.; Wei, J.; An, M.; Zhang, L.; Lin, S.; Shu, G.; Yuan, Z.; Lin, J.; Peng, G.; Liang, X.; Yin, L.; Zhang, W.; Zhao, L.; Fu, H. Casein nanoparticles as oral delivery carriers of mequindox for the improved bioavailability. Colloids Surf. B Biointerfaces, 2020, 195, 111221.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111221] [PMID: 32652401]
[62]
Guo, H.; Chen, Y.F.; Tang, Y.; Qian, J.Q. Method for enhancing bioavailability of myricetin based on self-assembly of casein-myricetin nanomicelles. IET Nanobiotechnol., 2020, 14(3), 239-244.
[http://dx.doi.org/10.1049/iet-nbt.2018.5431] [PMID: 32338633]
[63]
Wijiani, N.; Isadiartuti, D.; Rijal, M.A.S.; Yusuf, H. Characterization and dissolution study of micellar curcumin-spray dried powder for oral delivery. Int. J. Nanomedicine, 2020, 15, 1787-1796.
[http://dx.doi.org/10.2147/IJN.S245050] [PMID: 32214811]
[64]
Kamal, S.; Kaur, D.; Kaur, P.; Sharma, A.; Garg, A.; Kaur, C.; Singh, G.; Kumar, R. Milk-based oral formulations of ibuprofen: An investigation on the role of milk in improving dissolution rate of drug. J. Rep. Pharm. Sci., 2019, 8(1), 47-54.
[http://dx.doi.org/10.4103/jrptps.jrptps_18_18]
[65]
Peñalva, R.; Morales, J.; González-Navarro, C.J.; Larrañeta, E.; Quincoces, G.; Peñuelas, I.; Irache, J.M. Oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. Int. J. Mol. Sci., 2018, 19(9), 2816.
[http://dx.doi.org/10.3390/ijms19092816] [PMID: 30231546]
[66]
Turovsky, T.; Khalfin, R.; Kababya, S.; Schmidt, A.; Barenholz, Y.; Danino, D. Celecoxib encapsulation in β-casein micelles: Structure, interactions, and conformation. Langmuir, 2015, 31(26), 7183-7192.
[http://dx.doi.org/10.1021/acs.langmuir.5b01397] [PMID: 26068530]
[67]
Opálková Šišková, A.; Kozma, E.; Opálek, A.; Kroneková, Z.; Kleinová, A.; Nagy, Š.; Kronek, J.; Rydz, J.; Eckstein Andicsová, A. Diclofenac embedded in silk fibroin fibers as a drug delivery system. Materials (Basel), 2020, 13(16), 3580.
[http://dx.doi.org/10.3390/ma13163580] [PMID: 32823655]
[68]
Elzoghby, A.O.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Novel ionically crosslinked casein nanoparticles for flutamide delivery: Formulation, characterization, and in vivo pharmacokinetics. Int. J. Nanomedicine, 2013, 8, 1721-1732.
[http://dx.doi.org/10.2147/IJN.S40674] [PMID: 23658490]
[69]
Santinho, A.J.P.; Ueta, J.M.; Freitas, O.; Pereira, N.L. Physicochemical characterization and enzymatic degradation of casein microcapsules prepared by aqueous coacervation. J. Microencapsul., 2002, 19(5), 549-558.
[http://dx.doi.org/10.1080/02652040110105391] [PMID: 12433299]
[70]
Bayomi, M.A.; al-Suwayeh, S.A.; el-Helw, A.M.; Mesnad, A.F. Preparation of casein-chitosan microspheres containing diltiazem hydrochloride by an aqueous coacervation technique. Pharm. Acta Helv., 1998, 73(4), 187-192.
[http://dx.doi.org/10.1016/S0031-6865(98)00020-X] [PMID: 9861867]
[71]
Upputuri, R.T.P.; Mandal, A.K.A. Mathematical modeling and release kinetics of green tea polyphenols released from casein nanoparticles. Iran. J. Pharm. Res., 2019, 18(3), 1137-1146.
[PMID: 32641927]
[72]
Bar-Zeev, M. Kelmansky, D.; Assaraf, Y.G.; Livney, Y.D. β-Casein micelles for oral delivery of SN-38 and elacridar to overcome BCRP-mediated multidrug resistance in gastric cancer. Eur. J. Pharm. Biopharm., 2018, 133, 240-249.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.018] [PMID: 30367935]
[73]
Shapira, A.; Davidson, I.; Avni, N.; Assaraf, Y.G.; Livney, Y.D. β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: Stability, target-activated release and cytotoxicity. Eur. J. Pharm. Biopharm., 2012, 80(2), 298-305.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.022] [PMID: 22085654]
[74]
Zhai, J.; Waddington, L.; Wooster, T.J.; Aguilar, M.I.; Boyd, B.J. Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles. Langmuir, 2011, 27(24), 14757-14766.
[http://dx.doi.org/10.1021/la203061f] [PMID: 22026367]
[75]
Cheng, H.; Dong, H. Wusigale; Liang, L.; Boyd, B.J. A comparison of β-casein complexes and micelles as vehicles for trans-/cis-resveratrol. Food Chem., 2020, 330, 127209.
[http://dx.doi.org/10.1016/j.foodchem.2020.127209] [PMID: 32535314]
[76]
Niu, B.; Guo, J.; Guo, X.; Sun, X.; Rao, C.; Liu, C.; Zhang, J.; Zhang, C.; Fan, Y.Y.; Li, W. (NaPO3)6-assisted formation of dispersive casein-amorphous calcium phosphate nanoparticles: An excellent platform for curcumin delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101412.
[http://dx.doi.org/10.1016/j.jddst.2019.101412]
[77]
Khodaverdi, E.; Maftouhian, S.; Aliabadi, A.; Hassanzadeh-Khayyat, M.; Mohammadpour, F.; Khameneh, B.; Hadizadeh, F. Casein-based hydrogel carrying insulin: Preparation, in vitro evaluation and in vivo assessment. J. Pharm. Investig., 2019, 49(6), 635-641.
[http://dx.doi.org/10.1007/s40005-018-00422-y]
[78]
Chen, S.; Zhang, L.M. Casein nanogels as effective stabilizers for Pickering high internal phase emulsions. Colloids Surf. A Physicochem. Eng., 2019, 579, 123662.
[79]
Picchio, M.L.; Cuggino, J.C.; Nagel, G.; Wedepohl, S.; Minari, R.J.; Alvarez Igarzabal, C.I.; Gugliotta, L.M.; Calderón, M. Crosslinked casein-based micelles as a dually responsive drug delivery system. Polym. Chem., 2018, 9(25), 3499-3510.
[http://dx.doi.org/10.1039/C8PY00600H]
[80]
Huang, J.; Shu, Q.; Wang, L.; Wu, H.; Wang, A.Y.; Mao, H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials, 2015, 39, 105-113.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.059] [PMID: 25477177]
[81]
Corzo-Martínez, M.; Mohan, M.; Dunlap, J.; Harte, F. Effect of ultra-high pressure homogenization on the interaction between bovine casein micelles and ritonavir. Pharm. Res., 2015, 32(3), 1055-1071.
[http://dx.doi.org/10.1007/s11095-014-1518-9] [PMID: 25270571]
[82]
Dezhampanah, H.; Esmaili, M.; Hasani, L. Milk caseins as useful vehicle for delivery of dipyridamole drug. J. Biomol. Struct. Dyn., 2018, 36(6), 1602-1616.
[http://dx.doi.org/10.1080/07391102.2017.1329100] [PMID: 28521571]
[83]
Palacios, S.; Ramirez, M.; Lilue, M. Clinical study of the tolerability of calcium carbonate-casein microcapsules as a dietary supplement in a group of postmenopausal women. Drugs Context, 2020, 9, 202014.
[http://dx.doi.org/10.7573/dic.2020-1-4] [PMID: 32362931]
[84]
Elzoghby, A.O.; Saad, N.I.; Helmy, M.W.; Samy, W.M.; Elgindy, N.A. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 444-451.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.003] [PMID: 23872177]
[85]
Knepp, W.A.; Jayakrishnan, A.; Quigg, J.M.; Sitren, H.S.; Bagnall, J.J.; Goldberg, E.P. Synthesis, properties, and intratumoral evaluation of mitoxantrone-loaded casein microspheres in Lewis lung carcinoma. J. Pharm. Pharmacol., 1993, 45(10), 887-891.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb05614.x] [PMID: 7904628]
[86]
Abdelmoneem, M.A.; Mahmoud, M.; Zaky, A.; Helmy, M.W.; Sallam, M.; Fang, J.Y.; Elkhodairy, K.A.; Elzoghby, A.O. Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J. Control. Release, 2018, 287, 78-93.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.026] [PMID: 30138716]
[87]
Huang, J.; Qian, W.; Wang, L.; Wu, H.; Zhou, H.; Wang, A.Y.; Chen, H.; Yang, L.; Mao, H. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int. J. Nanomedicine, 2016, 11, 3087-3099.
[http://dx.doi.org/10.2147/IJN.S92722] [PMID: 27462153]
[88]
Zhen, X.; Wang, X.; Xie, C.; Wu, W.; Jiang, X. Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials, 2013, 34(4), 1372-1382.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.061] [PMID: 23158934]
[89]
Gil, A.G.; Irache, J.M.; Peñuelas, I.; González Navarro, C.J.; López de Cerain, A. Toxicity and biodistribution of orally administered casein nanoparticles. Food Chem. Toxicol., 2017, 106(Pt A), 477-486.
[http://dx.doi.org/10.1016/j.fct.2017.06.020] [PMID: 28610740]
[90]
Casein Market Forecast;. Trend analysis & opportunity. Casein market by derivatives - sodium caseinate, calcium caseinate, and potassium caseinate for 2020-2030 by future market insights., 2020. Available from: https://www.futuremarketinsights.com/reports/casein-market
[91]
Banaz, A. Casein proteins as a vehicle to deliver vitamin D3: Fortification of dairy products with vitamin D3 and bioavailability of vitamin D3 from fortified mozzarella cheese baked with pizza. MSc. Thesis, University of Toronto, Canada, 2012.
[http://dx.doi.org/10.13140/RG.2.2.24479.56487]
[92]
Audic, J.L.; Chaufer, B.; Daufin, G. Non-food applications of milk components and dairy coproducts: A review. Lait, 2003, 83(6), 417-438.
[http://dx.doi.org/10.1051/lait:2003027]
[93]
Xue, Y.; Zhou, S.; Fan, C.; Du, Q.; Jin, P. Enhanced antifungal activities of eugenol-entrapped casein nanoparticles against anthracnose in postharvest fruits. Nanomaterials (Basel), 2019, 9(12), 1777.
[http://dx.doi.org/10.3390/nano9121777] [PMID: 31847287]
[94]
Thomar, P.; Nicolai, T.; Benyahia, L.; Durand, D. Comparative study of the rheology and the structure of sodium and calcium caseinate solutions. Int. Dairy J., 2013, 31(2), 100-106.
[http://dx.doi.org/10.1016/j.idairyj.2013.02.005]
[95]
Bhat, M.Y. Casein Proteins: Structural and Functional Aspects. In: Milk Proteins - From Structure to Biological Properties and Health Aspects; Isabel, Gigli, Ed.; Intech Open, 2016.
[http://dx.doi.org/10.5772/64187]
[96]
Stefanucci, A.; Mollica, A.; Macedonio, G.; Zengin, G.; Ahmed, A.A.; Novellino, E. Exogenous opioid peptides derived from food proteins and their possible uses as dietary supplements: A critical review. Food Rev. Int., 2018, 34(1), 70-86.
[http://dx.doi.org/10.1080/87559129.2016.1225220]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy