Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Low-Carbohydrate Ketogenic Diet for Improvement of Glycemic Control: Mechanism of Action of Ketosis and Beneficial Effects

Author(s): Hussein F. Sakr, Srinivasa R. Sirasanagandla, Srijit Das*, Abdulhadi I. Bima and Ayman Z. Elsamanoudy

Volume 19, Issue 2, 2023

Published on: 17 August, 2022

Article ID: e110522204580 Pages: 12

DOI: 10.2174/1573399818666220511121629

Price: $65

conference banner
Abstract

The incidence of metabolic syndrome and diabetes mellitus is increasing globally. A diet rich in carbohydrates increases the hyperglycemic state. While considering the lifestyle changes to combat life-threatening diseases, there is an effort to decrease the daily intake of carbohydrates. A low-carbohydrate diet also makes the body rely more on fat for energy, so there is less fat accumulation. A diet is considered to be low-carbohydrate ketogenic if the intake is ≤ 50 g per day. The ‘low -carbohydrate ketogenic diet’ (LCKD) produces ketosis. LCKD contains high-fat, moderateprotein, and low-carbohydrate components. The main objectives of the present review are to discuss insulin resistance in different viscera of the body, describe the role of adipokines in insulin resistance, understand the mechanism of ketogenesis, and determine the impact of LCKD in overcoming insulin resistance in the body. In the present review, we also highlight the beneficial effects of LCKD in metabolic, neurodegenerative, cardiovascular, and lipid disorders and discuss the effect on longevity and aging. LCKD may help in combating the morbidity and mortality arising from the above-mentioned diseases and also help in leading a better quality of life.

Keywords: Ketogenic, diet, insulin, diabetes mellitus, fats, carbohydrates, ketosis.

[1]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th ed. Diabetes Res Clin Pract 2019; 157(107843): 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[2]
Alotaibi A, Perry L, Gholizadeh L, Al-Ganmi A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J Epidemiol Glob Health 2017; 7(4): 211-8.
[http://dx.doi.org/10.1016/j.jegh.2017.10.001] [PMID: 29110860]
[3]
Lone S, Lone K, Khan S, Pampori RA. Assessment of metabolic syndrome in Kashmiri population with type 2 diabetes employing the standard criteria’s given by WHO, NCEPATP III and IDF. J Epidemiol Glob Health 2017; 7(4): 235-9.
[http://dx.doi.org/10.1016/j.jegh.2017.07.004] [PMID: 29110863]
[4]
Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 2009; 150(11): 4931-40.
[http://dx.doi.org/10.1210/en.2009-0532] [PMID: 19819944]
[5]
Bremer AA, Mietus-Snyder M, Lustig RH. Toward a unifying hypothesis of metabolic syndrome. Pediatrics 2012; 129(3): 557-70.
[http://dx.doi.org/10.1542/peds.2011-2912] [PMID: 22351884]
[6]
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9(1): 25-53.
[http://dx.doi.org/10.2174/157339913804143225] [PMID: 22974359]
[7]
Barber TM, Hanson P, Kabisch S, Pfeiffer AFH, Weickert MO. The low-carbohydrate diet: Short-term metabolic efficacy versus longer-term limitations. Nutrients 2021; 13(4): 1187.
[http://dx.doi.org/10.3390/nu13041187] [PMID: 33916669]
[8]
Kwok CS, Gulati M, Michos ED, et al. Dietary components and risk of cardiovascular disease and all-cause mortality: A review of evidence from meta-analyses. Eur J Prev Cardiol 2019; 26(13): 1415-29.
[http://dx.doi.org/10.1177/2047487319843667] [PMID: 30971126]
[9]
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013; 3(1): 1-58.
[http://dx.doi.org/10.1002/cphy.c110062] [PMID: 23720280]
[10]
Manninen AH. Metabolic effects of the very-low-carbohydrate diets: Misunderstood “villains” of human metabolism. J Int Soc Sports Nutr 2004; 1(2): 7-11.
[http://dx.doi.org/10.1186/1550-2783-1-2-7] [PMID: 18500949]
[11]
Wolever TM. Dietary carbohydrates and insulin action in humans. Br J Nutr 2000; 83(1) (Suppl. 1): S97-S102.
[http://dx.doi.org/10.1017/S0007114500001021] [PMID: 10889799]
[12]
DeFronzo RA. Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Neth J Med 1997; 50(5): 191-7.
[http://dx.doi.org/10.1016/S0300-2977(97)00012-0] [PMID: 9175399]
[13]
Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 2013; 4: 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
[14]
Wilcox G. Insulin and insulin resistance. Clin Biochem Rev 2005; 26(2): 19-39.
[PMID: 16278749]
[15]
Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 2020; 7(22): 22.
[http://dx.doi.org/10.3389/fcvm.2020.00022] [PMID: 32158768]
[16]
Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 2006; 116(9): 2464-72.
[http://dx.doi.org/10.1172/JCI27047] [PMID: 16906224]
[17]
Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89(3): 331-40.
[http://dx.doi.org/10.1016/S0092-8674(00)80213-5] [PMID: 9150132]
[18]
Goldberg IJ. Lipoprotein lipase and lipolysis: Central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 1996; 37(4): 693-707.
[http://dx.doi.org/10.1016/S0022-2275(20)37569-6] [PMID: 8732771]
[19]
Bergman R N, Kim S P, Hsu I R, et al. Abdominal obesity: Role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med 2007; 120(2 Suppl 1): 012.
[http://dx.doi.org/10.1016/j.amjmed.2006.11.012]
[20]
McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 1997; 244(1): 1-14.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00001.x] [PMID: 9063439]
[21]
Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res 2005; 36(3): 232-40.
[http://dx.doi.org/10.1016/j.arcmed.2005.01.005] [PMID: 15925013]
[22]
Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endocr Rev 2008; 29(7): 777-822.
[http://dx.doi.org/10.1210/er.2008-0024] [PMID: 18971485]
[23]
Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet 2010; 375(9733): 2267-77. Evidence seen in Pubmed-https://pubmed.ncbi.nlm.nih.gov/206 09972/
[http://dx.doi.org/10.1016/S0140-6736(10)60408-4] [PMID: 20609972]
[24]
Roden M, Krssak M, Stingl H, et al. Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes 1999; 48(2): 358-64.
[http://dx.doi.org/10.2337/diabetes.48.2.358] [PMID: 10334314]
[25]
Roden M. How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 2004; 19: 92-6.
[http://dx.doi.org/10.1152/nips.01459.2003] [PMID: 15143200]
[26]
Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS. Triacylglycerol metabolism in adipose tissue. Future Lipidol 2007; 2(2): 229-37.
[http://dx.doi.org/10.2217/17460875.2.2.229] [PMID: 19194515]
[27]
Bolsoni-Lopes A, Alonso-Vale MI. Lipolysis and lipases in white adipose tissue - An update. Arch Endocrinol Metab 2015; 59(4): 335-42.
[http://dx.doi.org/10.1590/2359-3997000000067] [PMID: 26331321]
[28]
McGarry JD. Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51(1): 7-18.
[http://dx.doi.org/10.2337/diabetes.51.1.7] [PMID: 11756317]
[29]
Li Q, Zhao M, Wang Y, et al. Associations between serum free fatty acid levels and incident diabetes in a 3-year cohort study. Diabetes Metab Syndr Obes 2021; 14: 2743-51.
[http://dx.doi.org/10.2147/DMSO.S302681] [PMID: 34168474]
[30]
Chen G. The interactions of insulin and vitamin a signaling systems for the regulation of hepatic glucose and lipid metabolism. Cells 2021; 10(8): 2160.
[http://dx.doi.org/10.3390/cells10082160]
[31]
Snel M, Jonker JT, Schoones J, et al. Ectopic fat and insulin resistance: Pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol 2012; 2012(10): 983814.
[http://dx.doi.org/10.1155/2012/983814] [PMID: 22675355]
[32]
Sakr HF. Modulation of metabolic and cardiac dysfunctions by swimming in overweight rats on a high cholesterol and fructose diet: Possible role of adiponectin. J Physiol Pharmacol 2013; 64(2): 231-40.
[PMID: 23756398]
[33]
Sakr HF, Al-Hashem FH, El-Naby WM, et al. Preventive roles of swimming exercise and pioglitazone treatment on hepatic dysfunction in a rat model of metabolic syndrome. Can J Physiol Pharmacol 2014; 92(2): 162-70.
[http://dx.doi.org/10.1139/cjpp-2013-0043] [PMID: 24502640]
[34]
Volek JS, Phinney SD, Forsythe CE, et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009; 44(4): 297-309.
[http://dx.doi.org/10.1007/s11745-008-3274-2] [PMID: 19082851]
[35]
Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436(7049): 356-62.
[http://dx.doi.org/10.1038/nature03711] [PMID: 16034410]
[36]
Wolf G. Serum retinol-binding protein: A link between obesity, insulin resistance, and type 2 diabetes. Nutr Rev 2007; 65(5): 251-6.
[http://dx.doi.org/10.1111/j.1753-4887.2007.tb00302.x] [PMID: 17566551]
[37]
Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019; 11(11): E2664.
[http://dx.doi.org/10.3390/nu11112664] [PMID: 31694146]
[38]
Park HK, Ahima RS. Physiology of leptin: Energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015; 64(1): 24-34.
[http://dx.doi.org/10.1016/j.metabol.2014.08.004] [PMID: 25199978]
[39]
Para I, Albu A, Porojan MD. Adipokines and arterial stiffness in obesity. Medicina 2021; 57(7): 653.
[http://dx.doi.org/10.3390/medicina57070653]
[40]
Antuna-Puente B, Feve B, Fellahi S, Bastard JP. Adipokines: The missing link between insulin resistance and obesity. Diabetes Metab 2008; 34(1): 2-11.
[http://dx.doi.org/10.1016/j.diabet.2007.09.004] [PMID: 18093861]
[41]
Ahima RS, Antwi DA. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am 2008; 37(4): 811-23.
[http://dx.doi.org/10.1016/j.ecl.2008.08.005] [PMID: 19026933]
[42]
Ramos-Lobo AM, Donato J Jr. The role of leptin in health and disease. Temperature 2017; 4(3): 258-91.
[http://dx.doi.org/10.1080/23328940.2017.1327003] [PMID: 28944270]
[43]
Sabbatini AR, Fontana V, Laurent S, Moreno H. An update on the role of adipokines in arterial stiffness and hypertension. J Hypertens 2015; 33(3): 435-44.
[http://dx.doi.org/10.1097/HJH.0000000000000444] [PMID: 25502905]
[44]
Leal Vde O, Mafra D. Adipokines in obesity. Clin Chim Acta 2013; 419: 87-94.
[http://dx.doi.org/10.1016/j.cca.2013.02.003] [PMID: 23422739]
[45]
Asada M, Morioka T, Yamazaki Y, et al. Plasma C1q/TNF-related protein-9 levels are associated with atherosclerosis in patients with type 2 diabetes without renal dysfunction. J Diabetes Res 2016; 2016(10): 8624313.
[http://dx.doi.org/10.1155/2016/8624313] [PMID: 28070523]
[46]
Agostinis-Sobrinho C, Vicente SECF. Kievišienė J, et al. High levels of adiponectin attenuate the detrimental association of adiposity with insulin resistance in adolescents. Nutr Metab Cardiovasc Dis 2020; 30(5): 822-8.
[http://dx.doi.org/10.1016/j.numecd.2020.02.011] [PMID: 32278607]
[47]
Sakr HF, Abbas AM, Khalil K, Shata AM. Modulatory effect of concomitant administration of sitagliptin and vitamin E on inflammatory biomarkers in rats fed with high fat diet: Role of adiponectin. J Physiol Pharmacol 2019; 70(6): 20.
[PMID: 32203939]
[48]
Handley RT, Bentley RE, Brown TL, Annan AA. Successful treatment of obesity and insulin resistance via ketogenic diet status post Roux-en-Y. BMJ Case Rep 2018; 2018(10): 2018-225643.
[http://dx.doi.org/10.1136/bcr-2018-225643] [PMID: 30121567]
[49]
Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of PPARα. Int J Mol Sci 2016; 17(12): E2093.
[http://dx.doi.org/10.3390/ijms17122093] [PMID: 27983603]
[50]
Włodarek D. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients 2019; 11(1): E169.
[http://dx.doi.org/10.3390/nu11010169] [PMID: 30650523]
[51]
Ding J, Xu X, Wu X, et al. Bone loss and biomechanical reduction of appendicular and axial bones under ketogenic diet in rats. Exp Ther Med 2019; 17(4): 2503-10.
[http://dx.doi.org/10.3892/etm.2019.7241] [PMID: 30906438]
[52]
Brouns F. Overweight and diabetes prevention: Is a low-carbohydrate-high-fat diet recommendable? Eur J Nutr 2018; 57(4): 1301-12.
[http://dx.doi.org/10.1007/s00394-018-1636-y] [PMID: 29541907]
[53]
Prins PJ, Noakes TD, Welton GL, et al. High rates of fat oxidation induced by a low-carbohydrate, high-fat diet, do not impair 5-km running performance in competitive recreational athletes. J Sports Sci Med 2019; 18(4): 738-50.
[PMID: 31827359]
[54]
Forsythe CE, Phinney SD, Fernandez ML, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 2008; 43(1): 65-77.
[http://dx.doi.org/10.1007/s11745-007-3132-7] [PMID: 18046594]
[55]
Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 2010; 91(3): 502-9.
[http://dx.doi.org/10.3945/ajcn.2008.26285] [PMID: 20089734]
[56]
Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: Role in diet-induced obesity. Crit Rev Biochem Mol Biol 2010; 45(3): 199-214.
[http://dx.doi.org/10.3109/10409231003667500] [PMID: 20218765]
[57]
Musaad S, Haynes EN. Biomarkers of obesity and subsequent cardiovascular events. Epidemiol Rev 2007; 29: 98-114.
[http://dx.doi.org/10.1093/epirev/mxm005] [PMID: 17494057]
[58]
Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 2003; 78(1): 91-8.
[http://dx.doi.org/10.1093/ajcn/78.1.91] [PMID: 12816776]
[59]
Lindgärde F, Vessby B, Ahrén B. Serum cholesteryl fatty acid composition and plasma glucose concentrations in Amerindian women. Am J Clin Nutr 2006; 84(5): 1009-13.
[http://dx.doi.org/10.1093/ajcn/84.5.1009] [PMID: 17093151]
[60]
Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. Diabetes Metab Res Rev 2000; 16(3): 202-10.
[http://dx.doi.org/10.1002/1520-7560(200005/06)16:3<202:AID-DMRR116>3.0.CO;2-#] [PMID: 10867720]
[61]
Sharma A, Davis A, Shekhawat PS. Hypoglycemia in the preterm neonate: Etiopathogenesis, diagnosis, management and long-term outcomes. Transl Pediatr 2017; 6(4): 335-48.
[http://dx.doi.org/10.21037/tp.2017.10.06] [PMID: 29184814]
[62]
Sharabi K, Tavares CD, Rines AK, Puigserver P. Molecular pathophysiology of hepatic glucose production. Mol Aspects Med 2015; 46: 21-33.
[http://dx.doi.org/10.1016/j.mam.2015.09.003] [PMID: 26549348]
[63]
Gumbiner B, Wendel JA, McDermott MP. Effects of diet composition and ketosis on glycemia during very-low-energy-diet therapy in obese patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr 1996; 63(1): 110-5.
[http://dx.doi.org/10.1093/ajcn/63.1.110] [PMID: 8604657]
[64]
Rafiullah M, Musambil M, David SK. Effect of a very low-carbohydrate ketogenic diet vs recommended diets in patients with type 2 diabetes: A meta-analysis. Nutr Rev 2022; 80(3): 488-502.
[http://dx.doi.org/10.1093/nutrit/nuab040] [PMID: 34338787]
[65]
Volek JS, Feinman RD. Carbohydrate restriction improves the features of Metabolic syndrome. Metabolic syndrome may be defined by the response to carbohydrate restriction. Nutr Metab (Lond) 2005; 2(31): 31.
[http://dx.doi.org/10.1186/1743-7075-2-31] [PMID: 16288655]
[66]
Westman EC, Mavropoulos J, Yancy WS, Volek JS. A review of low-carbohydrate ketogenic diets. Curr Atheroscler Rep 2003; 5(6): 476-83.
[http://dx.doi.org/10.1007/s11883-003-0038-6] [PMID: 14525681]
[67]
Rogovik AL, Goldman RD. Ketogenic diet for treatment of epilepsy. Can Fam Physician 2010; 56(6): 540-2.
[PMID: 20547519]
[68]
Conklin HW. Cause and treatment of epilepsy. J Am Osteopath Assoc 1922; 26: 11-4.
[69]
Zhao Z, Lange DJ, Voustianiouk A, et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 2006; 7(29): 29.
[http://dx.doi.org/10.1186/1471-2202-7-29] [PMID: 16584562]
[70]
Prins ML, Matsumoto JH. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res 2014; 55(12): 2450-7.
[http://dx.doi.org/10.1194/jlr.R046706] [PMID: 24721741]
[71]
Suzuki M, Suzuki M, Sato K, et al. Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn J Pharmacol 2001; 87(2): 143-50.
[http://dx.doi.org/10.1254/jjp.87.143] [PMID: 11700013]
[72]
Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(10): 5440-4.
[http://dx.doi.org/10.1073/pnas.97.10.5440] [PMID: 10805800]
[73]
Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxid Med Cell Longev 2016; 2016: 8590578.
[http://dx.doi.org/10.1155/2016/8590578] [PMID: 28116038]
[74]
Yang H, Shan W, Zhu F, Wu J, Wang Q. Ketone bodies in neurological diseases: Focus on neuroprotection and underlying mechanisms. Front Neurol 2019; 10: 585.
[http://dx.doi.org/10.3389/fneur.2019.00585] [PMID: 31244753]
[75]
Volek JS, Sharman MJ, Forsythe CE. Modification of lipoproteins by very low-carbohydrate diets. J Nutr 2005; 135(6): 1339-42.
[http://dx.doi.org/10.1093/jn/135.6.1339] [PMID: 15930434]
[76]
Ma D, Wang AC, Parikh I, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 2018; 8(1): 6670.
[http://dx.doi.org/10.1038/s41598-018-25190-5] [PMID: 29703936]
[77]
Blaak EE, Antoine JM, Benton D, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev 2012; 13(10): 923-84.
[http://dx.doi.org/10.1111/j.1467-789X.2012.01011.x] [PMID: 22780564]
[78]
Shai I, Schwarzfuchs D, Henkin Y, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359(3): 229-41.
[http://dx.doi.org/10.1056/NEJMoa0708681] [PMID: 18635428]
[79]
Dong T, Guo M, Zhang P, Sun G, Chen B. The effects of low-carbohydrate diets on cardiovascular risk factors: A meta-analysis. PLoS One 2020; 15(1): e0225348.
[http://dx.doi.org/10.1371/journal.pone.0225348] [PMID: 31935216]
[80]
Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol 2011; 57(11): 1299-313.
[http://dx.doi.org/10.1016/j.jacc.2010.09.073] [PMID: 21392646]
[81]
Dashti HM, Mathew TC, Hussein T, et al. Long-term effects of a ketogenic diet in obese patients. Exp Clin Cardiol 2004; 9(3): 200-5.
[PMID: 19641727]
[82]
Haufe S, Engeli S, Kast P, et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 2011; 53(5): 1504-14.
[http://dx.doi.org/10.1002/hep.24242] [PMID: 21400557]
[83]
Westman EC, Yancy WS Jr, Olsen MK, Dudley T, Guyton JR. Effect of a low-carbohydrate, ketogenic diet program compared to a low-fat diet on fasting lipoprotein subclasses. Int J Cardiol 2006; 110(2): 212-6.
[http://dx.doi.org/10.1016/j.ijcard.2005.08.034] [PMID: 16297472]
[84]
LeCheminant JD, Smith BK, Westman EC, Vernon MC, Donnelly JE. Comparison of a reduced carbohydrate and reduced fat diet for LDL, HDL, and VLDL subclasses during 9-months of weight maintenance subsequent to weight loss. Lipids Health Dis 2010; 9(54): 54.
[http://dx.doi.org/10.1186/1476-511X-9-54] [PMID: 20515484]
[85]
Burén J, Ericsson M, Damasceno NRT, Sjödin A. A ketogenic low-carbohydrate high-fat diet increases LDL cholesterol in healthy, young, normal-weight women: A randomized controlled feeding trial. Nutrients 2021; 13(3): 814.
[http://dx.doi.org/10.3390/nu13030814] [PMID: 33801247]
[86]
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304(8): H1060-76.
[http://dx.doi.org/10.1152/ajpheart.00646.2012] [PMID: 23396451]
[87]
Chiu S, Williams PT, Krauss RM. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial. PLoS One 2017; 12(2): e0170664.
[http://dx.doi.org/10.1371/journal.pone.0170664] [PMID: 28166253]
[88]
Froyen E. The effects of fat consumption on low-density lipoprotein particle size in healthy individuals: A narrative review Lipids Health Dis 2021; 20(1): 021-01501.
[http://dx.doi.org/10.1186/s12944-021-01501-0]
[89]
Luukkonen PK, Dufour S, Lyu K, et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 2020; 117(13): 7347-54.
[http://dx.doi.org/10.1073/pnas.1922344117] [PMID: 32179679]
[90]
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: Old questions and new insights. Science 2011; 332(6037): 1519-23.
[http://dx.doi.org/10.1126/science.1204265] [PMID: 21700865]
[91]
Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008; 134(2): 424-31.
[http://dx.doi.org/10.1053/j.gastro.2007.11.038] [PMID: 18242210]
[92]
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115(5): 1343-51.
[http://dx.doi.org/10.1172/JCI23621] [PMID: 15864352]
[93]
Adiels M, Taskinen MR, Packard C, et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 2006; 49(4): 755-65.
[http://dx.doi.org/10.1007/s00125-005-0125-z]
[94]
Samuel VT, Shulman GI. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab 2018; 27(1): 22-41.
[http://dx.doi.org/10.1016/j.cmet.2017.08.002] [PMID: 28867301]
[95]
Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011; 54(10): 2506-14.
[http://dx.doi.org/10.1007/s00125-011-2204-7] [PMID: 21656330]
[96]
Abbasi J. Interest in the ketogenic diet grows for weight loss and type 2 diabetes. JAMA 2018; 319(3): 215-7.
[http://dx.doi.org/10.1001/jama.2017.20639] [PMID: 29340675]
[97]
Kirk E, Reeds DN, Finck BN, Mayurranjan SM, Patterson BW, Klein S. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 2009; 136(5): 1552-60.
[http://dx.doi.org/10.1053/j.gastro.2009.01.048] [PMID: 19208352]
[98]
Sevastianova K, Kotronen A, Gastaldelli A, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr 2011; 94(1): 104-11.
[http://dx.doi.org/10.3945/ajcn.111.012369] [PMID: 21525193]
[99]
Hassani Zadeh S, Mansoori A, Hosseinzadeh M. Relationship between dietary patterns and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Gastroenterol Hepatol 2021; 36(6): 1470-8.
[http://dx.doi.org/10.1111/jgh.15363] [PMID: 33269500]
[100]
McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 1980; 49: 395-420.
[http://dx.doi.org/10.1146/annurev.bi.49.070180.002143] [PMID: 6157353]
[101]
McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989; 5(3): 155-71.
[PMID: 2520283]
[102]
Speakman JR, Mitchell SE. Caloric restriction. Mol Aspects Med 2011; 32(3): 159-221.
[http://dx.doi.org/10.1016/j.mam.2011.07.001] [PMID: 21840335]
[103]
Bruss MD, Khambatta CF, Ruby MA, Aggarwal I, Hellerstein MK. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 2010; 298(1): E108-16.
[http://dx.doi.org/10.1152/ajpendo.00524.2009] [PMID: 19887594]
[104]
Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 2017; 25(2): 262-84.
[http://dx.doi.org/10.1016/j.cmet.2016.12.022] [PMID: 28178565]
[105]
Douris N, Melman T, Pecherer JM, et al. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim Biophys Acta 2015; 1852 (10 Pt A): 2056-65.
[http://dx.doi.org/10.1016/j.bbadis.2015.07.009] [PMID: 26170063]
[106]
Roberts MN, Wallace MA, Tomilov AA, et al. A Ketogenic diet extends longevity and healthspan in adult mice. Cell Metab 2017; 26(3): 539-546.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.08.005] [PMID: 28877457]
[107]
Augustus E, Granderson I, Rocke KD. The impact of a ketogenic dietary intervention on the quality of life of stage II and III cancer patients: A randomized controlled trial in the Caribbean. Nutr Cancer 2021; 73(9): 1590-600.
[http://dx.doi.org/10.1080/01635581.2020.1803930] [PMID: 32791011]
[108]
Cohen CW, Fontaine KR, Arend RC, Soleymani T, Gower BA. Favorable effects of a ketogenic diet on physical function, perceived energy, and food cravings in women with ovarian or endometrial cancer: A randomized, controlled trial. Nutrients 2018; 10(9): E1187.
[http://dx.doi.org/10.3390/nu10091187] [PMID: 30200193]
[109]
Phillips MCL, Deprez LM, Mortimer GMN, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimers Res Ther 2021; 13(1): 51.
[http://dx.doi.org/10.1186/s13195-021-00783-x] [PMID: 33622392]
[110]
Durrer C, McKelvey S, Singer J, et al. A randomized controlled trial of pharmacist-led therapeutic carbohydrate and energy restriction in type 2 diabetes. Nat Commun 2021; 12(1): 5367.
[http://dx.doi.org/10.1038/s41467-021-25667-4] [PMID: 34508090]
[111]
Abboud M, AlAnouti F, Georgaki E, Papandreou D. Effect of ketogenic diet on quality of life in adults with chronic disease: A systematic review of randomized controlled trials. Nutrients 2021; 13(12): 4463.
[http://dx.doi.org/10.3390/nu13124463] [PMID: 34960015]
[112]
Kosinski C, Jornayvaz FR. Effects of ketogenic diets on cardiovascular risk factors: Evidence from animal and human studies. Nutrients 2017; 9(5): E517.
[http://dx.doi.org/10.3390/nu9050517] [PMID: 28534852]
[113]
Brouns F. Correction to: Overweight and diabetes prevention: Is a low-carbohydrate-high-fat diet recommendable? Eur J Nutr 2019; 58(3): 1339.
[http://dx.doi.org/10.1007/s00394-019-01959-w] [PMID: 30989335]
[114]
Wołos-Kłosowicz K, Bandurska-Stankiewicz E. Effects of common weight loss plans on diabetes mellitus and cardiovascular risk factors. Prim Care Diabetes 2021; 16(2): 252-6.
[http://dx.doi.org/10.1016/j.pcd.2021.11.003] [PMID: 34802979]
[115]
Heikura IA, Burke LM, Hawley JA, et al. A short-term ketogenic diet impairs markers of bone health in response to exercise. Front Endocrinol (Lausanne) 2020; 10: 880.
[http://dx.doi.org/10.3389/fendo.2019.00880] [PMID: 32038477]
[116]
Roehl K, Sewak SL. Practice paper of the academy of nutrition and dietetics: Classic and modified ketogenic diets for treatment of epilepsy. J Acad Nutr Diet 2017; 117(8): 1279-92.
[http://dx.doi.org/10.1016/j.jand.2017.06.006] [PMID: 28754198]
[117]
Kang HC, Chung DE, Kim DW, Kim HD. Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia 2004; 45(9): 1116-23.
[http://dx.doi.org/10.1111/j.0013-9580.2004.10004.x] [PMID: 15329077]
[118]
Bostock ECS, Kirkby KC, Taylor BV, Hawrelak JA. Response: Commentary: Consumer reports of “Keto Flu” associated with the ketogenic diet. Front Nutr 2020; 7: 575713.
[http://dx.doi.org/10.3389/fnut.2020.575713] [PMID: 33392235]
[119]
Hoyt CS, Billson FA. Optic neuropathy in ketogenic diet. Br J Ophthalmol 1979; 63(3): 191-4.
[http://dx.doi.org/10.1136/bjo.63.3.191] [PMID: 435431]
[120]
Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F. Ketogenic diet and microbiota: Friends or enemies? Genes (Basel) 2019; 10(7): E534.
[http://dx.doi.org/10.3390/genes10070534] [PMID: 31311141]
[121]
Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Nutrients 2013; 5(1): 234-52.
[http://dx.doi.org/10.3390/nu5010234] [PMID: 23344252]
[122]
Hsu YJ, Huang CC, Lin CI. The effect of a low carbohydrate ketogenic diet with or without exercise on postpartum weight retention, metabolic profile and physical activity performance in postpartum mice. J Nutr Biochem 2022; 102: 108941.
[http://dx.doi.org/10.1016/j.jnutbio.2022.108941] [PMID: 35017000]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy