Research Article

替比夫定降低慢性乙型肝炎患者血清血管紧张素转换酶2浓度

卷 23, 期 5, 2023

发表于: 15 July, 2022

页: [420 - 424] 页: 5

弟呕挨: 10.2174/1566524022666220510220533

价格: $65

conference banner
摘要

背景:自 2019 年 12 月以来,由严重急性呼吸系统综合症冠状病毒 2 (SARS-CoV-2)引起的 2019 冠状病毒病在全球范围内肆虐。目前,尚无有效的治疗方法获得批准。随着疫情的继续蔓延,SARS-CoV-2 突变体出现,其中一些随着疫苗耐药性的增加而变得更具传染性。 SARS-CoV-2 进入宿主细胞的主要途径是通过将其刺突蛋白与宿主受体血管紧张素转换酶 2 (ACE2)结合。除了血管紧张素转换酶2的膜结合形式,血管紧张素转换酶2的可溶形式 (sACE2) 也可以结合 SARS-CoV-2 进行病毒内吞作用。 目的:此前,我们发现替比夫定降低了血液中血管紧张素转换酶1的浓度。因此,我们推测这种药物也可能会降低 sACE2 的浓度。 方法:在这项回顾性研究中,收集了 39 名接受替比夫定治疗的乙型肝炎患者的血清样本,并使用 ELISA 试剂盒检查了 sACE2 浓度。 结果:发现在接受替比夫定治疗的慢性乙型肝炎患者中,sACE2 的血清浓度显着下降。 结论:替比夫定治疗降低了 sACE2 浓度,这可能会降低 SARS-CoV-2 的感染风险。

关键词: 2019新型冠状病毒,严重急性呼吸综合征冠状病毒2,血管紧张素转化酶,替比夫定,乙型肝炎病毒,血清,SARS-CoV-2,血管紧张素转换酶2。

[1]
Stadler K, Rappuoli R. SARS: Understanding the virus and development of rational therapy. Curr Mol Med 2005; 5(7): 677-97.
[http://dx.doi.org/10.2174/156652405774641124] [PMID: 16305493]
[2]
Petersen E, Koopmans M, Go U, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis 2020; 20(9): e238-44.
[http://dx.doi.org/10.1016/S1473-3099(20)30484-9] [PMID: 32628905]
[3]
Sun J, He WT, Wang L, et al. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med 2020; 26(5): 483-95.
[http://dx.doi.org/10.1016/j.molmed.2020.02.008] [PMID: 32359479]
[4]
Centers for disease control and prevention. Available from:cdc.gov/coronavirus/2019-ncov/variants/variant-info.html (Accessed Apr 21, 2022).
[5]
Scialo F, Daniele A, Amato F, et al. ACE2: The major cell entry receptor for SARS-CoV-2. Lung 2020; 198(6): 867-77.
[http://dx.doi.org/10.1007/s00408-020-00408-4] [PMID: 33170317]
[6]
Guo J, Huang Z, Lin L, Lv J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: A viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc 2020; 9(7): e016219.
[http://dx.doi.org/10.1161/JAHA.120.016219] [PMID: 32233755]
[7]
Varagic J, Ahmad S, Nagata S, Ferrario CM. ACE2: Angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep 2014; 16(3): 420.
[http://dx.doi.org/10.1007/s11906-014-0420-5] [PMID: 24510672]
[8]
Yalcin HC, Sukumaran V, Al-Ruweidi MKAA, Shurbaji S. Do changes in ACE-2 expression affect SARS-CoV-2 virulence and related complications: A closer look into membrane-bound and soluble forms. Int J Mol Sci 2021; 22(13): 6703.
[http://dx.doi.org/10.3390/ijms22136703] [PMID: 34201415]
[9]
Yeung ML, Teng JLL, Jia L, et al. Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell 2021; 184(8): 2212-2228.e12.
[http://dx.doi.org/10.1016/j.cell.2021.02.053] [PMID: 33713620]
[10]
Ou J, Zhang Y, Wang Y, et al. ACE2-Targeting antibody suppresses SARS-CoV-2 Omicron and Delta variants. Signal Transduct Target Ther 2022; 7(1): 43.
[http://dx.doi.org/10.1038/s41392-022-00913-3] [PMID: 35140198]
[11]
Matthews SJ. Telbivudine for the management of chronic hepatitis B virus infection. Clin Ther 2007; 29(12): 2635-53.
[http://dx.doi.org/10.1016/j.clinthera.2007.12.032] [PMID: 18201580]
[12]
Gane EJ, Deray G, Liaw YF, et al. Telbivudine improves renal function in patients with chronic hepatitis B. Gastroenterology 2014; 146(1): 138-146.e5.
[http://dx.doi.org/10.1053/j.gastro.2013.09.031] [PMID: 24067879]
[13]
Park J, Jung KS, Lee HW, et al. Effects of entecavir and tenofovir on renal function in patients with hepatitis B virus-related compensated and decompensated cirrhosis. Gut Liver 2017; 11(6): 828-34.
[http://dx.doi.org/10.5009/gnl16484] [PMID: 28651305]
[14]
Liang KH, Chen YC, Hsu CW, Chang ML, Yeh CT. Decrease of serum angiotensin converting enzyme levels upon telbivudine treatment for chronic hepatitis B virus infection and negative correlations between the enzyme levels and estimated glumerular filtration rates. Hepat Mon 2014; 14(1): e15074.
[http://dx.doi.org/10.5812/hepatmon.15074] [PMID: 24596580]
[15]
Aleem A, Akbar Samad AB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). StatPearls. Treasure Island (FL): StatPearls Publishing 2022.
[16]
Glasgow A, Glasgow J, Limonta D, et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117(45): 28046-55.
[http://dx.doi.org/10.1073/pnas.2016093117] [PMID: 33093202]
[17]
Zhu ZL, Qiu XD, Wu S, et al. Blocking effect of demethylzeylasteral on the interaction between human ACE2 protein and SARS-CoV-2 RBD protein discovered using SPR technology. Molecules 2020; 26(1): 57.
[http://dx.doi.org/10.3390/molecules26010057] [PMID: 33374387]
[18]
Karoyan P, Vieillard V, Gómez-Morales L, et al. Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Commun Biol 2021; 4(1): 197.
[http://dx.doi.org/10.1038/s42003-021-01736-8] [PMID: 33580154]
[19]
Rahman MR, Banik A, Chowdhury IM, Sajib EH, Sarkar S. Identification of potential antivirals against SARS-CoV-2 using virtual screening method. Inform Med Unlocked 2021; 23: 100531.
[http://dx.doi.org/10.1016/j.imu.2021.100531] [PMID: 33594342]
[20]
Maurya SK, Maurya AK, Mishra N, Siddique HR. Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2. J Recept Signal Transduct Res 2020; 40(6): 605-12.
[http://dx.doi.org/10.1080/10799893.2020.1772298] [PMID: 32476594]
[21]
Elzupir AO. Molecular docking and dynamics investigations for identifying potential inhibitors of the 3-chymotrypsin-like protease of SARS-CoV-2: Repurposing of approved pyrimidonic pharmaceuticals for COVID-19 treatment. Molecules 2021; 26(24): 7458.
[http://dx.doi.org/10.3390/molecules26247458] [PMID: 34946540]
[22]
Min JS, Kwon S, Jin YH. SARS-CoV-2 RdRp inhibitors selected from a cell-based SARS-CoV-2 RdRp activity assay system. Biomedicines 2021; 9(8): 996.
[http://dx.doi.org/10.3390/biomedicines9080996] [PMID: 34440200]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy