Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Pancreatic Macrophages and their Diabetogenic Effects: Highlight on Several Metabolic Scenarios and Dietary Approach

Author(s): Giuseppe Lisco, Vito Angelo Giagulli, Giovanni De Pergola, Edoardo Guastamacchia, Emilio Jirillo* and Vincenzo Triggiani

Volume 23, Issue 3, 2023

Published on: 26 August, 2022

Page: [304 - 315] Pages: 12

DOI: 10.2174/1871530322666220510123913

Price: $65

Abstract

Background: Evidence shows that a low-grade inflammation sustains type 2 diabetes (T2D). Pancreatic macrophages release cytokines and chemokines that play a fundamental role in the pathophysiology of islet damage and destruction of beta-cells.

Methods: The authors discuss the main mechanism by which resident (pancreatic) and circulating macrophages regulate beta-cell development and survival in several scenarios, including T2D, type 1 diabetes mellitus, obesity, and insulin resistance. Data are mostly related to in vitro and animal studies.

Results: Lastly, an overview of the role of the Mediterranean diet components (i.e., polyphenols, polyunsaturated fatty acids, prebiotics, probiotics, and vitamins) will be illustrated as potential agents for reducing inflammation and oxidative stress in patients with T2D when used along with antihyperglycemic treatments.

Keywords: Diabetes mellitus, islets, macrophages, obesity, nutrition, pancreatic macrophages

Graphical Abstract
[1]
Ross, E.A.; Devitt, A.; Johnson, J.R. Macrophages: The good, the bad, and the gluttony. Front. Immunol., 2021, 12, 708186.
[http://dx.doi.org/10.3389/fimmu.2021.708186] [PMID: 34456917]
[2]
Alvarez-Argote, S.; O’Meara, C.C. The evolving roles of cardiac macrophages in homeostasis, regeneration, and repair. Int. J. Mol. Sci., 2021, 22(15), 7923.
[http://dx.doi.org/10.3390/ijms22157923] [PMID: 34360689]
[3]
Rehman, A.; Pacher, P.; Haskó, G. Role of macrophages in the endocrine system. Trends Endocrinol. Metab., 2021, 32(4), 238-256.
[http://dx.doi.org/10.1016/j.tem.2020.12.001] [PMID: 33455863]
[4]
Pollard, J.W. Trophic macrophages in development and disease. Nat. Rev. Immunol., 2009, 9(4), 259-270.
[http://dx.doi.org/10.1038/nri2528] [PMID: 19282852]
[5]
Baer, C.; Squadrito, M.L.; Iruela-Arispe, M.L.; De Palma, M. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Exp. Cell Res., 2013, 319(11), 1626-1634.
[http://dx.doi.org/10.1016/j.yexcr.2013.03.026] [PMID: 23542777]
[6]
Cosentino, C.; Regazzi, R. Crosstalk between macrophages and pancreatic β-cells in islet development, homeostasis and disease. Int. J. Mol. Sci., 2021, 22(4), 1765.
[http://dx.doi.org/10.3390/ijms22041765] [PMID: 33578952]
[7]
Guo, J.; Fu, W. Immune regulation of islet homeostasis and adaptation. J. Mol. Cell Biol., 2020, 12(10), 764-774.
[http://dx.doi.org/10.1093/jmcb/mjaa009] [PMID: 32236479]
[8]
Seymour, P.A. Sox9: A master regulator of the pancreatic program. Rev. Diabet. Stud., 2014, 11(1), 51-83.
[http://dx.doi.org/10.1900/RDS.2014.11.51] [PMID: 25148367]
[9]
Marty-Santos, L.; Cleaver, O. Pdx1 regulates pancreas tubulogenesis and E-cadherin expression. Development, 2016, 143(1), 101-112.
[http://dx.doi.org/10.1242/dev.135806] [PMID: 26657766]
[10]
Jin, K.; Xiang, M. Transcription factor PTFI1a in development, diseases and reprogramming. Cell. Mol. Life Sci., 2019, 76(5), 921-940.
[http://dx.doi.org/10.1007/s00018-018-2972-z] [PMID: 30470852]
[11]
McDonald, E.; Li, J.; Krishnamurthy, M.; Fellows, G.F.; Goodyer, C.G.; Wang, R. SOX9 regulates endocrine cell differentiation during human fetal pancreas development. Int. J. Biochem. Cell Biol., 2012, 44(1), 72-83.
[http://dx.doi.org/10.1016/j.biocel.2011.09.008] [PMID: 21983268]
[12]
McGrath, P.S.; Watson, C.L.; Ingram, C.; Helmrath, M.A.; Wells, J.M. The basic helix-loop-helix transcription factor NEUROG3 is required for development of the human endocrine pancreas. Diabetes, 2015, 64(7), 2497-2505.
[http://dx.doi.org/10.2337/db14-1412] [PMID: 25650326]
[13]
Villasenor, A.; Chong, D.C.; Cleaver, O. Biphasic Ngn3 expression in the developing pancreas. Dev. Dyn., 2008, 237(11), 3270-3279.
[http://dx.doi.org/10.1002/dvdy.21740] [PMID: 18924236]
[14]
Bastidas-Ponce, A.; Scheibner, K.; Lickert, H.; Bakhti, M. Cellular and molecular mechanisms coordinating pancreas development. Development, 2017, 144(16), 2873-2888.
[http://dx.doi.org/10.1242/dev.140756] [PMID: 28811309]
[15]
Kesavan, G.; Lieven, O.; Mamidi, A.; Öhlin, Z.L.; Johansson, J.K.; Li, W.C.; Lommel, S.; Greiner, T.U.; Semb, H. Cdc42/N-WASP signaling links actin dynamics to pancreatic β cell delamination and differentiation. Development, 2014, 141(3), 685-696.
[http://dx.doi.org/10.1242/dev.100297] [PMID: 24449844]
[16]
Rukstalis, J.M.; Habener, J.F. Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr. Patterns, 2007, 7(4), 471-479.
[http://dx.doi.org/10.1016/j.modgep.2006.11.001] [PMID: 17185046]
[17]
Lee, K.; Gjorevski, N.; Boghaert, E.; Radisky, D.C.; Nelson, C.M. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J., 2011, 30(13), 2662-2674.
[http://dx.doi.org/10.1038/emboj.2011.159] [PMID: 21610693]
[18]
Morris, H.T.; Machesky, L.M. Actin cytoskeletal control during epithelial to mesenchymal transition: Focus on the pancreas and intestinal tract. Br. J. Cancer, 2015, 112(4), 613-620.
[http://dx.doi.org/10.1038/bjc.2014.658] [PMID: 25611303]
[19]
Villasenor, A.; Marty-Santos, L.; Dravis, C.; Fletcher, P.; Henkemeyer, M.; Cleaver, O. EphB3 marks delaminating endocrine progenitor cells in the developing pancreas. Dev. Dyn., 2012, 241(5), 1008-1019.
[http://dx.doi.org/10.1002/dvdy.23781] [PMID: 22434763]
[20]
Larsen, H.L.; Grapin-Botton, A. The molecular and morphogenetic basis of pancreas organogenesis. Semin. Cell Dev. Biol., 2017, 66, 51-68.
[http://dx.doi.org/10.1016/j.semcdb.2017.01.005] [PMID: 28089869]
[21]
George, N.M.; Day, C.E.; Boerner, B.P.; Johnson, R.L.; Sarvetnick, N.E. Hippo signaling regulates pancreas development through inactivation of Yap. Mol. Cell. Biol., 2012, 32(24), 5116-5128.
[http://dx.doi.org/10.1128/MCB.01034-12] [PMID: 23071096]
[22]
Gao, T.; Zhou, D.; Yang, C.; Singh, T.; Penzo-Méndez, A.; Maddipati, R.; Tzatsos, A.; Bardeesy, N.; Avruch, J.; Stanger, B.Z. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology, 2013, 144(7), 1543-1553.
[http://dx.doi.org/10.1053/j.gastro.2013.02.037]
[23]
Epelman, S.; Lavine, K.J.; Randolph, G.J. Origin and functions of tissue macrophages. Immunity, 2014, 41(1), 21-35.
[http://dx.doi.org/10.1016/j.immuni.2014.06.013] [PMID: 25035951]
[24]
Gomez Perdiguero, E.; Klapproth, K.; Schulz, C.; Busch, K.; Azzoni, E.; Crozet, L.; Garner, H.; Trouillet, C.; de Bruijn, M.F.; Geissmann, F.; Rodewald, H.R. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015, 518(7540), 547-551.
[http://dx.doi.org/10.1038/nature13989] [PMID: 25470051]
[25]
Ginhoux, F.; Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity, 2016, 44(3), 439-449.
[http://dx.doi.org/10.1016/j.immuni.2016.02.024] [PMID: 26982352]
[26]
Orkin, S.H.; Zon, L.I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell, 2008, 132(4), 631-644.
[http://dx.doi.org/10.1016/j.cell.2008.01.025] [PMID: 18295580]
[27]
Wicksteed, B.; Brissova, M.; Yan, W.; Opland, D.M.; Plank, J.L.; Reinert, R.B.; Dickson, L.M.; Tamarina, N.A.; Philipson, L.H.; Shostak, A.; Bernal-Mizrachi, E.; Elghazi, L.; Roe, M.W.; Labosky, P.A.; Myers, M.G., Jr; Gannon, M.; Powers, A.C.; Dempsey, P.J. Conditional gene targeting in mouse pancreatic ß-Cells: Analysis of ectopic Cre transgene expression in the brain. Diabetes, 2010, 59(12), 3090-3098.
[http://dx.doi.org/10.2337/db10-0624] [PMID: 20802254]
[28]
Hoeffel, G.; Ginhoux, F. Ontogeny of tissue-resident macrophages. Front. Immunol., 2015, 6, 486.
[http://dx.doi.org/10.3389/fimmu.2015.00486] [PMID: 26441990]
[29]
Dzierzak, E.; Bigas, A. Blood development: Hematopoietic stem cell dependence and independence. Cell Stem Cell, 2018, 22(5), 639-651.
[http://dx.doi.org/10.1016/j.stem.2018.04.015] [PMID: 29727679]
[30]
Schulz, C.; Gomez Perdiguero, E.; Chorro, L.; Szabo-Rogers, H.; Cagnard, N.; Kierdorf, K.; Prinz, M.; Wu, B.; Jacobsen, S.E.; Pollard, J.W.; Frampton, J.; Liu, K.J.; Geissmann, F. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science, 2012, 336(6077), 86-90.
[http://dx.doi.org/10.1126/science.1219179] [PMID: 22442384]
[31]
Geutskens, S.B.; Otonkoski, T.; Pulkkinen, M.A.; Drexhage, H.A.; Leenen, P.J. Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. J. Leukoc. Biol., 2005, 78(4), 845-852.
[http://dx.doi.org/10.1189/jlb.1004624] [PMID: 16037409]
[32]
Ying, W.; Lee, Y.S.; Dong, Y.; Seidman, J.S.; Yang, M.; Isaac, R.; Seo, J.B.; Yang, B.H.; Wollam, J.; Riopel, M.; McNelis, J.; Glass, C.K.; Olefsky, J.M.; Fu, W. Expansion of islet-resident macrophages leads to inflammation affecting β cell proliferation and function in obesity. Cell Metab., 2019, 29(2), 457-474.
[http://dx.doi.org/10.1016/j.cmet.2018.12.003]
[33]
Wiktor-Jedrzejczak, W.; Bartocci, A.; Ferrante, A.W., Jr; Ahmed-Ansari, A.; Sell, K.W.; Pollard, J.W.; Stanley, E.R. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA, 1990, 87(12), 4828-4832.
[http://dx.doi.org/10.1073/pnas.87.12.4828] [PMID: 2191302]
[34]
Banaei-Bouchareb, L.; Gouon-Evans, V.; Samara-Boustani, D.; Castellotti, M.C.; Czernichow, P.; Pollard, J.W.; Polak, M. Insulin cell mass is altered in Csf1op/Csf1op macrophage-deficient mice. J. Leukoc. Biol., 2004, 76(2), 359-367.
[http://dx.doi.org/10.1189/jlb.1103591] [PMID: 15178709]
[35]
Mussar, K.; Tucker, A.; McLennan, L.; Gearhart, A.; Jimenez-Caliani, A.J.; Cirulli, V.; Crisa, L. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors. PLoS One, 2014, 9(2), e89492.
[http://dx.doi.org/10.1371/journal.pone.0089492] [PMID: 24586821]
[36]
Riley, K.G.; Pasek, R.C.; Maulis, M.F.; Peek, J.; Thorel, F.; Brigstock, D.R.; Herrera, P.L.; Gannon, M. Connective tissue growth factor modulates adult β-cell maturity and proliferation to promote β-cell regeneration in mice. Diabetes, 2015, 64(4), 1284-1298.
[http://dx.doi.org/10.2337/db14-1195] [PMID: 25392241]
[37]
Nackiewicz, D.; Dan, M.; Speck, M.; Chow, S.Z.; Chen, Y.C.; Pospisilik, J.A.; Verchere, C.B.; Ehses, J.A. Islet macrophages shift to a reparative state following pancreatic beta-cell death and are a major source of islet insulin-like growth factor-1. iScience, 2020, 23(1), 100775.
[http://dx.doi.org/10.1016/j.isci.2019.100775] [PMID: 31962237]
[38]
Weitz, J.R.; Makhmutova, M.; Almaça, J.; Stertmann, J.; Aamodt, K.; Brissova, M.; Speier, S.; Rodriguez-Diaz, R.; Caicedo, A. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia, 2018, 61(1), 182-192.
[http://dx.doi.org/10.1007/s00125-017-4416-y] [PMID: 28884198]
[39]
Obermüller, S.; Lindqvist, A.; Karanauskaite, J.; Galvanovskis, J.; Rorsman, P.; Barg, S. Selective nucleotide-release from dense-core granules in insulin-secreting cells. J. Cell Sci., 2005, 118(Pt 18), 4271-4282.
[http://dx.doi.org/10.1242/jcs.02549] [PMID: 16141231]
[40]
Zinselmeyer, B.H.; Vomund, A.N.; Saunders, B.T.; Johnson, M.W.; Carrero, J.A.; Unanue, E.R. The resident macrophages in murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. Diabetologia, 2018, 61(6), 1374-1383.
[http://dx.doi.org/10.1007/s00125-018-4592-4] [PMID: 29589072]
[41]
Weitz, J.R.; Jacques-Silva, C.; Qadir, M.M.F.; Umland, O.; Pereira, E.; Qureshi, F.; Tamayo, A.; Dominguez-Bendala, J.; Rodriguez-Diaz, R.; Almaça, J.; Caicedo, A. Secretory functions of macrophages in the human pancreatic islet are regulated by endogenous purinergic signaling. Diabetes, 2020, 69(6), 1206-1218.
[http://dx.doi.org/10.2337/db19-0687] [PMID: 32245801]
[42]
Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[43]
Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Goforth, M.H.; Morel, C.R.; Subramanian, V.; Mukundan, L.; Red Eagle, A.; Vats, D.; Brombacher, F.; Ferrante, A.W.; Chawla, A. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 2007, 447(7148), 1116-1120.
[http://dx.doi.org/10.1038/nature05894] [PMID: 17515919]
[44]
Berthold, D.L.; Jones, K.D.J.; Udalova, I.A. Regional specialization of macrophages along the gastrointestinal tract. Trends Immunol., 2021, 42(9), 795-806.
[http://dx.doi.org/10.1016/j.it.2021.07.006] [PMID: 34373208]
[45]
Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity, 2010, 32(5), 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[46]
Liu, X.; Zhang, J.; Zeigler, A.C.; Nelson, A.R.; Lindsey, M.L.; Saucerman, J.J. Network analysis reveals a distinct axis of macrophage activation in response to conflicting inflammatory cues. J. Immunol., 2021, 206(4), 883-891.
[http://dx.doi.org/10.4049/jimmunol.1901444] [PMID: 33408259]
[47]
Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[48]
Zhou, F.; Huang, L.; Qu, S.L.; Chao, R.; Yang, C.; Jiang, Z.S.; Zhang, C. The emerging roles of extracellular vesicles in diabetes and diabetic complications. Clin. Chim. Acta, 2019, 497, 130-136.
[http://dx.doi.org/10.1016/j.cca.2019.07.032] [PMID: 31361990]
[49]
Eizirik, D.L.; Colli, M.L.; Ortis, F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol., 2009, 5(4), 219-226.
[http://dx.doi.org/10.1038/nrendo.2009.21] [PMID: 19352320]
[50]
Diana, J.; Gahzarian, L.; Simoni, Y.; Lehuen, A. Innate immunity in type 1 diabetes. Discov. Med., 2011, 11(61), 513-520.
[PMID: 21712017]
[51]
Charlton, B.; Bacelj, A.; Mandel, T.E. Administration of silica particles or anti-Lyt2 antibody prevents beta-cell destruction in NOD mice given cyclophosphamide. Diabetes, 1988, 37(7), 930-935.
[http://dx.doi.org/10.2337/diab.37.7.930] [PMID: 2838358]
[52]
Hutchings, P.; Rosen, H.; O’Reilly, L.; Simpson, E.; Gordon, S.; Cooke, A. Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature, 1990, 348(6302), 639-642.
[http://dx.doi.org/10.1038/348639a0] [PMID: 2250718]
[53]
Chen, M.C.; Proost, P.; Gysemans, C.; Mathieu, C.; Eizirik, D.L. Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1 beta-exposed human and rat islet cells. Diabetologia, 2001, 44(3), 325-332.
[http://dx.doi.org/10.1007/s001250051622] [PMID: 11317664]
[54]
Martin, A.P.; Grisotto, M.G.; Canasto-Chibuque, C.; Kunkel, S.L.; Bromberg, J.S.; Furtado, G.C.; Lira, S.A. Islet expression of M3 uncovers a key role for chemokines in the development and recruitment of diabetogenic cells in NOD mice. Diabetes, 2008, 57(2), 387-394.
[http://dx.doi.org/10.2337/db07-1309] [PMID: 18003753]
[55]
Wang, X.; Jia, S.; Geoffrey, R.; Alemzadeh, R.; Ghosh, S.; Hessner, M.J. Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J. Immunol., 2008, 180(3), 1929-1937.
[http://dx.doi.org/10.4049/jimmunol.180.3.1929] [PMID: 18209091]
[56]
Willcox, A.; Richardson, S.J.; Bone, A.J.; Foulis, A.K.; Morgan, N.G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol., 2009, 155(2), 173-181.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03860.x] [PMID: 19128359]
[57]
Ortis, F.; Miani, M.; Colli, M.L.; Cunha, D.A.; Gurzov, E.N.; Allagnat, F.; Chariot, A.; Eizirik, D.L. Differential usage of NF-κB activating signals by IL-1β and TNF-α in pancreatic beta cells. FEBS Lett., 2012, 586(7), 984-989.
[http://dx.doi.org/10.1016/j.febslet.2012.02.021] [PMID: 22569251]
[58]
Unanue, E.R.; Ferris, S.T.; Carrero, J.A. The role of islet antigen presenting cells and the presentation of insulin in the initiation of autoimmune diabetes in the NOD mouse. Immunol. Rev., 2016, 272(1), 183-201.
[http://dx.doi.org/10.1111/imr.12430] [PMID: 27319351]
[59]
Vomund, A.N.; Zinselmeyer, B.H.; Hughes, J.; Calderon, B.; Valderrama, C.; Ferris, S.T.; Wan, X.; Kanekura, K.; Carrero, J.A.; Urano, F.; Unanue, E.R. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proc. Natl. Acad. Sci. USA, 2015, 112(40), E5496-E5502.
[http://dx.doi.org/10.1073/pnas.1515954112] [PMID: 26324934]
[60]
Calderon, B.; Suri, A.; Unanue, E.R. In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: Studies from an acute model. Am. J. Pathol., 2006, 169(6), 2137-2147.
[http://dx.doi.org/10.2353/ajpath.2006.060539] [PMID: 17148676]
[61]
Zakharov, P.N.; Hu, H.; Wan, X.; Unanue, E.R. Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J. Exp. Med., 2020, 217(6), e20192362.
[http://dx.doi.org/10.1084/jem.20192362] [PMID: 32251514]
[62]
Bollyky, P.L.; Bice, J.B.; Sweet, I.R.; Falk, B.A.; Gebe, J.A.; Clark, A.E.; Gersuk, V.H.; Aderem, A.; Hawn, T.R.; Nepom, G.T. The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury. PLoS One, 2009, 4(4), e5063.
[http://dx.doi.org/10.1371/journal.pone.0005063] [PMID: 19357791]
[63]
Rasschaert, J.; Ladrière, L.; Urbain, M.; Dogusan, Z.; Katabua, B.; Sato, S.; Akira, S.; Gysemans, C.; Mathieu, C.; Eizirik, D.L. Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA+ interferon-gamma-induced apoptosis in primary pancreatic beta-cells. J. Biol. Chem., 2005, 280(40), 33984-33991.
[http://dx.doi.org/10.1074/jbc.M502213200] [PMID: 16027122]
[64]
Nackiewicz, D.; Dan, M.; He, W.; Kim, R.; Salmi, A.; Rütti, S.; Westwell-Roper, C.; Cunningham, A.; Speck, M.; Schuster-Klein, C.; Guardiola, B.; Maedler, K.; Ehses, J.A. TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia, 2014, 57(8), 1645-1654.
[http://dx.doi.org/10.1007/s00125-014-3249-1] [PMID: 24816367]
[65]
Farrell, E.; Hollmann, E.; le Roux, C.W.; Bustillo, M.; Nadglowski, J.; McGillicuddy, D. The lived experience of patients with obesity: A systematic review and qualitative synthesis. Obes. Rev., 2021, 22(12), e13334.
[http://dx.doi.org/10.1111/obr.13334] [PMID: 34402150]
[66]
Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol., 2017, 13(11), 633-643.
[http://dx.doi.org/10.1038/nrendo.2017.90] [PMID: 28799554]
[67]
Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol., 2020, 10, 1607.
[http://dx.doi.org/10.3389/fphys.2019.01607] [PMID: 32063863]
[68]
Ying, W.; Riopel, M.; Bandyopadhyay, G.; Dong, Y.; Birmingham, A.; Seo, J.B.; Ofrecio, J.M.; Wollam, J.; Hernandez-Carretero, A.; Fu, W.; Li, P.; Olefsky, J.M. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell, 2017, 171(2), 372-384.
[http://dx.doi.org/10.1016/j.cell.2017.08.035]
[69]
Eguchi, K.; Manabe, I.; Oishi-Tanaka, Y.; Ohsugi, M.; Kono, N.; Ogata, F.; Yagi, N.; Ohto, U.; Kimoto, M.; Miyake, K.; Tobe, K.; Arai, H.; Kadowaki, T.; Nagai, R. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab., 2012, 15(4), 518-533.
[http://dx.doi.org/10.1016/j.cmet.2012.01.023] [PMID: 22465073]
[70]
Ye, R.; Gordillo, R.; Shao, M.; Onodera, T.; Chen, Z.; Chen, S.; Lin, X.; SoRelle, J.A.; Li, X.; Tang, M.; Keller, M.P.; Kuliawat, R.; Attie, A.D.; Gupta, R.K.; Holland, W.L.; Beutler, B.; Herz, J.; Scherer, P.E. Intracellular lipid metabolism impairs β cell compensation during diet-induced obesity. J. Clin. Invest., 2018, 128(3), 1178-1189.
[http://dx.doi.org/10.1172/JCI97702] [PMID: 29457786]
[71]
Liang, J.J.; Fraser, I.D.C.; Bryant, C.E. Lipid regulation of NLRP3 inflammasome activity through organelle stress. Trends Immunol., 2021, 42(9), 807-823.
[http://dx.doi.org/10.1016/j.it.2021.07.005] [PMID: 34334306]
[72]
Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest., 2011, 121(6), 2111-2117.
[http://dx.doi.org/10.1172/JCI57132] [PMID: 21633179]
[73]
Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science, 1996, 271(5249), 665-668.
[http://dx.doi.org/10.1126/science.271.5249.665] [PMID: 8571133]
[74]
Dawson, D.W.; Hertzer, K.; Moro, A.; Donald, G.; Chang, H.H.; Go, V.L.; Pandol, S.J.; Lugea, A.; Gukovskaya, A.S.; Li, G.; Hines, O.J.; Rozengurt, E.; Eibl, G. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev. Res. (Phila.), 2013, 6(10), 1064-1073.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0065] [PMID: 23943783]
[75]
Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol., 2019, 10, 1084. [Erratum in: Front Immunol. 2020, 11, 234
[http://dx.doi.org/10.3389/fimmu.2019.01084] [PMID: 31178859]
[76]
Vaughan, T.; Li, L. Molecular mechanism underlying the inflammatory complication of leptin in macrophages. Mol. Immunol., 2010, 47(15), 2515-2518.
[http://dx.doi.org/10.1016/j.molimm.2010.06.006] [PMID: 20619458]
[77]
Glass, C.K.; Olefsky, J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab., 2012, 15(5), 635-645.
[http://dx.doi.org/10.1016/j.cmet.2012.04.001] [PMID: 22560216]
[78]
Rave, K.; Roggen, K.; Dellweg, S.; Heise, T.; tom Dieck, H. Improvement of insulin resistance after diet with a whole-grain based dietary product: Results of a randomized, controlled cross-over study in obese subjects with elevated fasting blood glucose. Br. J. Nutr., 2007, 98(5), 929-936.
[http://dx.doi.org/10.1017/S0007114507749267] [PMID: 17562226]
[79]
Liese, A.D.; Roach, A.K.; Sparks, K.C.; Marquart, L.; D’Agostino, R.B., Jr; Mayer-Davis, E.J. Whole-grain intake and insulin sensitivity: The insulin resistance atherosclerosis study. Am. J. Clin. Nutr., 2003, 78(5), 965-971.
[http://dx.doi.org/10.1093/ajcn/78.5.965] [PMID: 14594783]
[80]
Jang, Y.; Lee, J.H.; Kim, O.Y.; Park, H.Y.; Lee, S.Y. Consumption of whole grain and legume powder reduces insulin demand, lipid peroxidation, and plasma homocysteine concentrations in patients with coronary artery disease: Randomized controlled clinical trial. Arterioscler. Thromb. Vasc. Biol., 2001, 21(12), 2065-2071.
[http://dx.doi.org/10.1161/hq1201.100258] [PMID: 11742886]
[81]
Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals (Basel), 2021, 14(8), 806.
[http://dx.doi.org/10.3390/ph14080806] [PMID: 34451903]
[82]
Magriplis, E.; Chourdakis, M. Special issue “Mediterranean diet and metabolic diseases”. Nutrients, 2021, 13(8), 2680.
[http://dx.doi.org/10.3390/nu13082680]
[83]
Magrone, T. Editorial: Effects of extra virgin olive oil on the immune-mediated inflammatory responses: Potential clinical applications. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 3.
[http://dx.doi.org/10.2174/187153031801171212094005] [PMID: 29258417]
[84]
Magrone, T.; Panaro, M.A.; Jirillo, E.; Covelli, V. Molecular effects elicited in vitro by red wine on human healthy peripheral blood mononuclear cells: Potential therapeutical application of polyphenols to diet-related chronic diseases. Curr. Pharm. Des., 2008, 14(26), 2758-2766.
[http://dx.doi.org/10.2174/138161208786264179] [PMID: 18991694]
[85]
Marzulli, G.; Magrone, T.; Vonghia, L.; Kaneko, M.; Takimoto, H.; Kumazawa, Y.; Jirillo, E. Immunomodulating and anti-allergic effects of Negroamaro and Koshu Vitis vinifera fermented grape marc (FGM). Curr. Pharm. Des., 2014, 20(6), 864-868.
[http://dx.doi.org/10.2174/138161282006140220120640] [PMID: 23701568]
[86]
Lenzen, S.; Drinkgern, J.; Tiedge, M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med., 1996, 20(3), 463-466.
[http://dx.doi.org/10.1016/0891-5849(96)02051-5] [PMID: 8720919]
[87]
Maghsoudi, Z.; Ghiasvand, R.; Salehi-Abargouei, A. Empirically derived dietary patterns and incident type 2 diabetes mellitus: A systematic review and meta-analysis on prospective observational studies. Public Health Nutr., 2016, 19(2), 230-241.
[http://dx.doi.org/10.1017/S1368980015001251] [PMID: 25917191]
[88]
Zamora-Ros, R.; Forouhi, N.G.; Sharp, S.J.; González, C.A.; Buijsse, B.; Guevara, M.; van der Schouw, Y.T.; Amiano, P.; Boeing, H.; Bredsdorff, L.; Clavel-Chapelon, F.; Fagherazzi, G.; Feskens, E.J.; Franks, P.W.; Grioni, S.; Katzke, V.; Key, T.J.; Khaw, K.T.; Kühn, T.; Masala, G.; Mattiello, A.; Molina-Montes, E.; Nilsson, P.M.; Overvad, K.; Perquier, F.; Quirós, J.R.; Romieu, I.; Sacerdote, C.; Scalbert, A.; Schulze, M.; Slimani, N.; Spijkerman, A.M.; Tjonneland, A.; Tormo, M.J.; Tumino, R. van der A, D.L.; Langenberg, C.; Riboli, E.; Wareham, N.J. The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in European populations: The EPIC-InterAct study. Diabetes Care, 2013, 36(12), 3961-3970.
[http://dx.doi.org/10.2337/dc13-0877] [PMID: 24130345]
[89]
Guo, X.F.; Yang, B.; Tang, J.; Jiang, J.J.; Li, D. Apple and pear consumption and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Food Funct., 2017, 8(3), 927-934.
[http://dx.doi.org/10.1039/C6FO01378C] [PMID: 28186516]
[90]
Ding, M.; Bhupathiraju, S.N.; Chen, M.; van Dam, R.M.; Hu, F.B. Caffeinated and decaffeinated coffee consumption and risk of type 2 diabetes: A systematic review and a dose-response meta-analysis. Diabetes Care, 2014, 37(2), 569-586.
[http://dx.doi.org/10.2337/dc13-1203] [PMID: 24459154]
[91]
Jennings, A.; Welch, A.A.; Spector, T.; Macgregor, A.; Cassidy, A. Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J. Nutr., 2014, 144(2), 202-208.
[http://dx.doi.org/10.3945/jn.113.184358] [PMID: 24336456]
[92]
Vazquez-Prieto, M.A.; Bettaieb, A.; Haj, F.G.; Fraga, C.G.; Oteiza, P.I. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch. Biochem. Biophys., 2012, 527(2), 113-118.
[http://dx.doi.org/10.1016/j.abb.2012.02.019] [PMID: 22425757]
[93]
Youl, E.; Magous, R.; Cros, G.; Oiry, C. MAP Kinase cross talks in oxidative stress-induced impairment of insulin secretion. Involvement in the protective activity of quercetin. Fundam. Clin. Pharmacol., 2014, 28(6), 608-615.
[http://dx.doi.org/10.1111/fcp.12078] [PMID: 24702479]
[94]
Li, J.M.; Wang, W.; Fan, C.Y.; Wang, M.X.; Zhang, X.; Hu, Q.H.; Kong, L.D. Quercetin preserves β -cell mass and function in fructose-induced hyperinsulinemia through modulating pancreatic Akt/FoxO1 activation. Evid. Based Complement. Alternat. Med., 2013, 2013, 303902.
[http://dx.doi.org/10.1155/2013/303902] [PMID: 23533474]
[95]
Yang, K.; Chan, C.B. Epicatechin potentiation of glucose-stimulated insulin secretion in INS-1 cells is not dependent on its antioxidant activity. Acta Pharmacol. Sin., 2018, 39(5), 893-902.
[http://dx.doi.org/10.1038/aps.2017.174] [PMID: 29417944]
[96]
Martín, M.Á.; Fernández-Millán, E.; Ramos, S.; Bravo, L.; Goya, L. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress. Mol. Nutr. Food Res., 2014, 58(3), 447-456.
[http://dx.doi.org/10.1002/mnfr.201300291] [PMID: 24115486]
[97]
Jayaprakasam, B.; Vareed, S.K.; Olson, L.K.; Nair, M.G. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem., 2005, 53(1), 28-31.
[http://dx.doi.org/10.1021/jf049018+] [PMID: 15631504]
[98]
Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res., 2012, 65, 211-222.
[http://dx.doi.org/10.1016/B978-0-12-416003-3.00013-5] [PMID: 22361189]
[99]
Horia, E.; Watkins, B.A. Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells. Carcinogenesis, 2007, 28(4), 809-815.
[http://dx.doi.org/10.1093/carcin/bgl183] [PMID: 17052999]
[100]
Fedor, D.; Kelley, D.S. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12(2), 138-146.
[http://dx.doi.org/10.1097/MCO.0b013e3283218299] [PMID: 19202385]
[101]
Lin, N.; Shi, J.J.; Li, Y.M.; Zhang, X.Y.; Chen, Y.; Calder, P.C.; Tang, L.J. What is the impact of n-3 PUFAs on inflammation markers in type 2 diabetic mellitus populations?: A systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis., 2016, 15, 133.
[http://dx.doi.org/10.1186/s12944-016-0303-7] [PMID: 27544079]
[102]
Das, U.N. A defect in the activity of Delta6 and Delta5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 72(5), 343-350.
[http://dx.doi.org/10.1016/j.plefa.2005.01.002] [PMID: 15850715]
[103]
Mori, T.A.; Woodman, R.J.; Burke, V.; Puddey, I.B.; Croft, K.D.; Beilin, L.J. Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects. Free Radic. Biol. Med., 2003, 35(7), 772-781.
[http://dx.doi.org/10.1016/S0891-5849(03)00407-6] [PMID: 14583341]
[104]
Albert, B.B.; Derraik, J.G.; Brennan, C.M.; Biggs, J.B.; Smith, G.C.; Garg, M.L.; Cameron-Smith, D.; Hofman, P.L.; Cutfield, W.S. Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci. Rep., 2014, 4, 6697.
[http://dx.doi.org/10.1038/srep06697] [PMID: 25331725]
[105]
Vallianou, N.G.; Stratigou, T.; Tsagarakis, S. Microbiome and diabetes: Where are we now? Diabetes Res. Clin. Pract., 2018, 146, 111-118.
[http://dx.doi.org/10.1016/j.diabres.2018.10.008] [PMID: 30342053]
[106]
Hays, N.P.; Galassetti, P.R.; Coker, R.H. Prevention and treatment of type 2 diabetes: Current role of lifestyle, natural product, and pharmacological interventions. Pharmacol. Ther., 2008, 118(2), 181-191.
[http://dx.doi.org/10.1016/j.pharmthera.2008.02.003] [PMID: 18423879]
[107]
Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol., 2019, 103(16), 6463-6472.
[http://dx.doi.org/10.1007/s00253-019-09978-7] [PMID: 31267231]
[108]
Reid, G.; Sanders, M.E.; Gaskins, H.R.; Gibson, G.R.; Mercenier, A.; Rastall, R.; Roberfroid, M.; Rowland, I.; Cherbut, C.; Klaenhammer, T.R. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol., 2003, 37(2), 105-118.
[http://dx.doi.org/10.1097/00004836-200308000-00004] [PMID: 12869879]
[109]
Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 605-616. [Erratum in: Nat Rev Gastroenterol Hepatol. 2019].
[http://dx.doi.org/10.1038/s41575-019-0173-3] [PMID: 31296969]
[110]
Jana, U.K.; Kango, N. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int. J. Biol. Macromol., 2020, 149, 931-940.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.304] [PMID: 32014482]
[111]
Kumar Suryawanshi, R.; Kango, N. Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential. Food Chem., 2021, 334, 127428.
[http://dx.doi.org/10.1016/j.foodchem.2020.127428] [PMID: 32688173]
[112]
Sivaprakasam, S.; Bhutia, Y.D.; Yang, S.; Ganapathy, V. Short-chain fatty acid transporters: Role in colonic homeostasis. Compr. Physiol., 2017, 8(1), 299-314.
[http://dx.doi.org/10.1002/cphy.c170014] [PMID: 29357130]
[113]
Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol., 2011, 17(12), 1519-1528.
[http://dx.doi.org/10.3748/wjg.v17.i12.1519] [PMID: 21472114]
[114]
Chen, J.; Zhao, K.N.; Vitetta, L. Effects of intestinal microbial⁻elaborated butyrate on oncogenic signaling pathways. Nutrients, 2019, 11(5), 1026.
[http://dx.doi.org/10.3390/nu11051026] [PMID: 31067776]
[115]
Jana, U.K.; Kango, N.; Pletschke, B. Hemicellulose-derived oligosaccharides: Emerging prebiotics in disease alleviation. Front. Nutr., 2021, 8, 670817.
[http://dx.doi.org/10.3389/fnut.2021.670817] [PMID: 34386513]
[116]
Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[117]
Khat-Udomkiri, N.; Toejing, P.; Sirilun, S.; Chaiyasut, C.; Lailerd, N. Antihyperglycemic effect of rice husk derived xylooligosaccharides in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rat model. Food Sci. Nutr., 2019, 8(1), 428-444.
[http://dx.doi.org/10.1002/fsn3.1327] [PMID: 31993169]
[118]
Zheng, J.; Li, H.; Zhang, X.; Jiang, M.; Luo, C.; Lu, Z.; Xu, Z.; Shi, J. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J. Agric. Food Chem., 2018, 66(23), 5821-5831.
[http://dx.doi.org/10.1021/acs.jafc.8b00829] [PMID: 29701959]
[119]
Zhu, D.; Yan, Q.; Li, Y.; Liu, J.; Liu, H.; Jiang, Z. Effect of konjac mannan oligosaccharides on glucose homeostasis via the improvement of insulin and leptin resistance in vitro and in vivo. Nutrients, 2019, 11(8), 1705.
[http://dx.doi.org/10.3390/nu11081705] [PMID: 31344867]
[120]
Khan, M.T.; Nieuwdorp, M.; Bäckhed, F. Microbial modulation of insulin sensitivity. Cell Metab., 2014, 20(5), 753-760.
[http://dx.doi.org/10.1016/j.cmet.2014.07.006] [PMID: 25176147]
[121]
Ejtahed, H.S.; Hoseini-Tavassol, Z.; Khatami, S.; Zangeneh, M.; Behrouzi, A.; Ahmadi Badi, S.; Moshiri, A.; Hasani-Ranjbar, S.; Soroush, A.R.; Vaziri, F.; Fateh, A.; Ghanei, M.; Bouzari, S.; Najar-Peerayeh, S.; Siadat, S.D.; Larijani, B. Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. J. Diabetes Metab. Disord., 2020, 19(1), 265-271.
[http://dx.doi.org/10.1007/s40200-020-00502-7] [PMID: 32550175]
[122]
Zhang, Y.; Wang, L.; Zhang, J.; Li, Y.; He, Q.; Li, H.; Guo, X.; Guo, J.; Zhang, H. Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats. Eur. J. Nutr., 2014, 53(1), 221-232.
[http://dx.doi.org/10.1007/s00394-013-0519-5] [PMID: 23797890]
[123]
Hsieh, F.C.; Lan, C.C.; Huang, T.Y.; Chen, K.W.; Chai, C.Y.; Chen, W.T.; Fang, A.H.; Chen, Y.H.; Wu, C.S. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food Funct., 2016, 7(5), 2374-2388.
[http://dx.doi.org/10.1039/C5FO01396H] [PMID: 27163114]
[124]
Li, X.; Wang, E.; Yin, B.; Fang, D.; Chen, P.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Effects of Lactobacillus casei CCFM419 on insulin resistance and gut microbiota in type 2 diabetic mice. Benef. Microbes, 2017, 8(3), 421-432.
[http://dx.doi.org/10.3920/BM2016.0167] [PMID: 28504567]
[125]
Balakumar, M.; Prabhu, D.; Sathishkumar, C.; Prabu, P.; Rokana, N.; Kumar, R.; Raghavan, S.; Soundarajan, A.; Grover, S.; Batish, V.K.; Mohan, V.; Balasubramanyam, M. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur. J. Nutr., 2018, 57(1), 279-295.
[http://dx.doi.org/10.1007/s00394-016-1317-7] [PMID: 27757592]
[126]
Singh, S.; Sharma, R.K.; Malhotra, S.; Pothuraju, R.; Shandilya, U.K. Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef. Microbes, 2017, 8(2), 243-255.
[http://dx.doi.org/10.3920/BM2016.0090] [PMID: 28008783]
[127]
Alokail, M.S.; Sabico, S.; Al-Saleh, Y.; Al-Daghri, N.M.; Alkharfy, K.M.; Vanhoutte, P.M.; McTernan, P.G. Effects of probiotics in patients with diabetes mellitus type 2: Study protocol for a randomized, double-blind, placebo-controlled trial. Trials, 2013, 14, 195.
[http://dx.doi.org/10.1186/1745-6215-14-195] [PMID: 23822518]
[128]
Sabico, S.; Al-Mashharawi, A.; Al-Daghri, N.M.; Yakout, S.; Alnaami, A.M.; Alokail, M.S.; McTernan, P.G. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: A randomized clinical trial. J. Transl. Med., 2017, 15(1), 249.
[http://dx.doi.org/10.1186/s12967-017-1354-x] [PMID: 29228964]
[129]
Jafarnejad, S.; Saremi, S.; Jafarnejad, F.; Arab, A. Effects of a multispecies probiotic mixture on glycemic control and inflammatory status in women with gestational diabetes: A randomized controlled clinical trial. J. Nutr. Metab., 2016, 2016, 5190846.
[http://dx.doi.org/10.1155/2016/5190846] [PMID: 27429803]
[130]
Lindsay, K.L.; Brennan, L.; Kennelly, M.A.; Maguire, O.C.; Smith, T.; Curran, S.; Coffey, M.; Foley, M.E.; Hatunic, M.; Shanahan, F.; McAuliffe, F.M. Impact of probiotics in women with gestational diabetes mellitus on metabolic health: A randomized controlled trial. Am J Obstet Gynecol, 2015, 212(4), 496, e1-11.
[http://dx.doi.org/10.1016/j.ajog.2015.02.008]
[131]
Kocsis, T.; Molnár, B.; Németh, D.; Hegyi, P.; Szakács, Z.; Bálint, A.; Garami, A.; Soós, A.; Márta, K.; Solymár, M. Probiotics have beneficial metabolic effects in patients with type 2 diabetes mellitus: A meta-analysis of randomized clinical trials. Sci. Rep., 2020, 10(1), 11787.
[http://dx.doi.org/10.1038/s41598-020-68440-1] [PMID: 32678128]
[132]
Lu, L.; Bennett, D.A.; Millwood, I.Y.; Parish, S.; McCarthy, M.I.; Mahajan, A.; Lin, X.; Bragg, F.; Guo, Y.; Holmes, M.V.; Afzal, S.; Nordestgaard, B.G.; Bian, Z.; Hill, M.; Walters, R.G.; Li, L.; Chen, Z.; Clarke, R. Association of vitamin D with risk of type 2 diabetes: A Mendelian randomisation study in European and Chinese adults. PLoS Med., 2018, 15(5), e1002566.
[http://dx.doi.org/10.1371/journal.pmed.1002566] [PMID: 29718904]
[133]
Kayaniyil, S.; Vieth, R.; Retnakaran, R.; Knight, J.A.; Qi, Y.; Gerstein, H.C.; Perkins, B.A.; Harris, S.B.; Zinman, B.; Hanley, A.J. Association of vitamin D with insulin resistance and beta-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care, 2010, 33(6), 1379-1381.
[http://dx.doi.org/10.2337/dc09-2321] [PMID: 20215450]
[134]
Tabatabaeizadeh, S.A.; Avan, A.; Bahrami, A.; Khodashenas, E.; Esmaeili, H.; Ferns, G.A.; Abdizadeh, M.F.; Ghayour-Mobarhan, M. High dose supplementation of vitamin D affects measures of systemic inflammation: Reductions in high sensitivity C-reactive protein level and Neutrophil to Lymphocyte Ratio (NLR) distribution. J. Cell. Biochem., 2017, 118(12), 4317-4322.
[http://dx.doi.org/10.1002/jcb.26084] [PMID: 28425575]
[135]
Mitri, J.; Dawson-Hughes, B.; Hu, F.B.; Pittas, A.G. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: The Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am. J. Clin. Nutr., 2011, 94(2), 486-494.
[http://dx.doi.org/10.3945/ajcn.111.011684] [PMID: 21715514]
[136]
Rasouli, N.; Brodsky, I.G.; Chatterjee, R.; Kim, S.H.; Pratley, R.E.; Staten, M.A.; Pittas, A.G. Effects of vitamin D supplementation on insulin sensitivity and secretion in prediabetes. J. Clin. Endocrinol. Metab., 2022, 107(1), 230-240.
[http://dx.doi.org/10.1210/clinem/dgab649] [PMID: 34473295]
[137]
Cantorna, M.T.; Lin, Y.D.; Arora, J.; Bora, S.; Tian, Y.; Nichols, R.G.; Patterson, A.D.; Vitamin, D. Vitamin D regulates the microbiota to control the numbers of RORγt/FoxP3+ regulatory T cells in the colon. Front. Immunol., 2019, 10, 1772.
[http://dx.doi.org/10.3389/fimmu.2019.01772] [PMID: 31417552]
[138]
Tabatabaeizadeh, S.A.; Tafazoli, N. The role of vitamin D in prevention of type 2 diabetes. A meta-analysis. Clin. Nutr. ESPEN, 2021, 41, 88-93.
[http://dx.doi.org/10.1016/j.clnesp.2020.11.005] [PMID: 33487311]
[139]
Engwa, G.A.; Nweke, F.N.; Karngong, G.N.; Afiukwa, C.A.; Nwagu, K.E. Understanding the pathogenesis, therapeutic targets/drug action and pharmacogenetics of type 2 diabetes: Is there a future for personalised medicine? Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(10), 1569-1589.
[http://dx.doi.org/10.2174/1871530320666200425202312] [PMID: 32334506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy