Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Nanotechnology as a Promising Approach for Detection, Diagnosis and Treatment of Food Allergens

Author(s): Mahendra Rai*, Avinash P. Ingle, Alka Yadav, Patrycja Golińska, Joanna Trzcińska-Wencel, Sanjay Rathod and Shital Bonde

Volume 19, Issue 1, 2023

Published on: 09 June, 2022

Page: [90 - 102] Pages: 13

DOI: 10.2174/1573413718666220426101432

Price: $65

Abstract

Food allergy is one of the world's most serious health problems, which needs new and safer approaches to resolve it. The rapid progress of nanotechnology to tackle the problem of food allergen has generated a new hope. Nanoparticles can be used as a unique system to detect allergens. Furthermore, nanotechnology offers allergen-delivery systems based on nanoparticles as potential adjuvants for allergen-specific immunotherapy. In addition, the use of novel adjuvants using nanoparticles provides a harmless and potentially more effective way of treatment for allergic diseases. For therapeutic applications, nanotechnology-based delivery systems provide increased bioavailability and targeted delivery of food allergens. In addition, nano-based allergen-delivery approaches are mainly aimed at devising a novel and promising approach for allergy vaccines. This review discusses the potential role of nanotechnological strategies for detection, drug delivery, and the treatment of allergies.

Keywords: Food allergens, nanoparticles, diagnosis, delivery, treatment, immunotherapy.

Graphical Abstract
[1]
Alves, R.C.; Barroso, M.F.; González-García, M.B.; Oliveira, M.B.; Delerue-Matos, C. New trends in food allergens detection: Toward biosensing strategies. Crit. Rev. Food Sci. Nutr., 2016, 56(14), 2304-2319.
[http://dx.doi.org/10.1080/10408398.2013.831026] [PMID: 25779935]
[2]
Zhou, J.; Wang, Y.; Qian, Y.; Zhang, T.; Zheng, L.; Fu, L. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned biochips. Food Control, 2020, 107, 106547.
[http://dx.doi.org/10.1016/j.foodcont.2019.02.041]
[3]
Neethirajan, S.; Weng, X.; Tah, X.; Cordero, J.; Ragavan, K. Nano-biosensor platforms for detecting food allergens – new trends. Sens. Biosensing Res., 2018, 18, 13-30.
[http://dx.doi.org/10.1016/j.sbsr.2018.02.005]
[4]
Aquino, A.; Conte-Junior, C.A. Systematic review of food allergy: Nanobiosensor and food allergen detection. Biosensors (Basel), 2020, 10(12), 1-10.
[http://dx.doi.org/10.3390/bios10120194] [PMID: 33260424]
[5]
Taylor, S. The nature of food allergy. In: Detecting Allergens in Food; Koppelman, S.J.; Hefle, S.L., Eds.; Woodhead Publishing Limited: Cambridge, 2004; 3, pp. 3-20.
[6]
Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; Bahna, S.L.; Beck, L.A.; Byrd-Bredbenner, C.; Camargo, C.A., Jr; Eichenfield, L.; Furuta, G.T.; Hanifin, J.M.; Jones, C.; Kraft, M.; Levy, B.D.; Lieberman, P.; Luccioli, S.; McCall, K.M.; Schneider, L.C.; Simon, R.A.; Simons, F.E.; Teach, S.J.; Yawn, B.P.; Schwaninger, J.M. Guidelines for the diagnosis and management of food allergy in the United States: Report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol., 2010, 126(6)(Suppl.), S1-S58.
[http://dx.doi.org/10.1016/j.jaci.2010.10.008] [PMID: 21134576]
[7]
Ward, R.K. Introduction to food allergy. In: Handbook of Food Allergen Detection and Control; Flanagan, S., Ed.; Elsevier: Cambridge, 2015; pp. 1-14.
[http://dx.doi.org/10.1533/9781782420217.1]
[8]
Gómez-Arribas, L.N.; Benito-Peña, E.; Hurtado-Sánchez, M.D.C.; Moreno-Bondi, M.C. Biosensing based on nanoparticles for food allergens detection. Sensors (Basel), 2018, 18(4), 1087.
[http://dx.doi.org/10.3390/s18041087] [PMID: 29617319]
[9]
Mustafa, F.; Andreescu, S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances, 2020, 10(33), 19309-19336.
[http://dx.doi.org/10.1039/D0RA01084G]
[10]
Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Lett., 2020, 12(1), 45.
[http://dx.doi.org/10.1007/s40820-020-0383-9] [PMID: 34138283]
[11]
Dos Santos, C.A.; Ingle, A.P.; Rai, M. The emerging role of metallic nanoparticles in food. Appl. Microbiol. Biotechnol., 2020, 104(6), 2373-2383.
[http://dx.doi.org/10.1007/s00253-020-10372-x] [PMID: 31989225]
[12]
Kumar, S.; Ahlawat, W.; Kumar, R.; Dilbaghi, N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron., 2015, 70, 498-503.
[http://dx.doi.org/10.1016/j.bios.2015.03.062] [PMID: 25899923]
[13]
Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assunção, M.; Rosa, J.; Baptista, P.V. Noble metal nanoparticles for biosensing applications. Sensors (Basel), 2012, 12(2), 1657-1687.
[http://dx.doi.org/10.3390/s120201657] [PMID: 22438731]
[14]
Deng, W.; Goldys, E.M. Chemical sensing with nanoparticles as optical reporters: From noble metal nanoparticles to quantum dots and upconverting nanoparticles. Analyst (Lond.), 2014, 139(21), 5321-5334.
[http://dx.doi.org/10.1039/C4AN01272K] [PMID: 25170528]
[15]
Danie-Kingsley, J.; Ranjan, S.; Dasgupta, N.; Saha, P. Nanotechnology for tissue engineering: Need, techniques and applications. J. Pharm. Res., 2013, 7(2), 200-204.
[http://dx.doi.org/10.1016/j.jopr.2013.02.021]
[16]
Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem., 2011, 59(8), 3485-3498.
[http://dx.doi.org/10.1021/jf104517j] [PMID: 21405020]
[17]
van Hengel, A.J. Food allergen detection methods and the challenge to protect food-allergic consumers. Anal. Bioanal. Chem., 2007, 389(1), 111-118.
[http://dx.doi.org/10.1007/s00216-007-1353-5] [PMID: 17530230]
[18]
Iqbal, A.; Shah, F.; Jamal, Y.; Hamayun, M.B. Detection of food allergens by ELISA and other common methods. Fresenius Environ. Bull., 2018, 27, 8340-8346.
[19]
Yeang, H.Y.; Arif, S.A.M.; Raulf-Heimsoth, M.; Loke, Y.H.; Sander, I.; Sulong, S.H.; Lau, C.H.; Hamilton, R.G. Hev b 5 and Hev b 13 as allergen markers to estimate the allergenic potency of latex gloves. J. Allergy Clin. Immunol., 2004, 114(3), 593-598.
[http://dx.doi.org/10.1016/j.jaci.2004.05.039] [PMID: 15356563]
[20]
Stephan, O.; Vieths, S. Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. J. Agric. Food Chem., 2004, 52(12), 3754-3760.
[http://dx.doi.org/10.1021/jf035178u] [PMID: 15186093]
[21]
Katsurada, A.; Hagiwara, Y.; Miyashita, K.; Satou, R.; Miyata, K.; Ohashi, N.; Navar, L.G.; Kobori, H. Novel sandwich ELISA for human angiotensinogen. Am. J. Physiol. Renal Physiol., 2007, 293(3), F956-F960.
[http://dx.doi.org/10.1152/ajprenal.00090.2007] [PMID: 17553939]
[22]
Gonzalez, R.M.; Seurynck-Servoss, S.L.; Crowley, S.A.; Brown, M.; Omenn, G.S.; Hayes, D.F.; Zangar, R.C. Development and validation of sandwich ELISA microarrays with minimal assay interference. J. Proteome Res., 2008, 7(6), 2406-2414.
[http://dx.doi.org/10.1021/pr700822t] [PMID: 18422355]
[23]
Stanker, L.H.; Merrill, P.; Scotcher, M.C.; Cheng, L.W. Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type a and their use in analysis of milk by sandwich ELISA. J. Immunol. Methods, 2008, 336(1), 1-8.
[http://dx.doi.org/10.1016/j.jim.2008.03.003] [PMID: 18452945]
[24]
Hiragun, M.; Hiragun, T.; Ishii, K.; Suzuki, H.; Tanaka, A.; Yanase, Y.; Mihara, S.; Haruta, Y.; Kohno, N.; Hide, M. Elevated serum IgE against MGL_1304 in patients with atopic dermatitis and cholinergic urticaria. Allergol. Int., 2014, 63(1), 83-93.
[http://dx.doi.org/10.2332/allergolint.13-OA-0611] [PMID: 24457815]
[25]
Ladics, G.S. Assessment of the potential allergenicity of genetically-engineered food crops. J. Immunotoxicol., 2019, 16(1), 43-53.
[http://dx.doi.org/10.1080/1547691X.2018.1533904] [PMID: 30409058]
[26]
Schubert-Ullrich, P.; Rudolf, J.; Ansari, P.; Galler, B.; Führer, M.; Molinelli, A.; Baumgartner, S. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: An overview. Anal. Bioanal. Chem., 2009, 395(1), 69-81.
[http://dx.doi.org/10.1007/s00216-009-2715-y] [PMID: 19308361]
[27]
Prado, M.; Ortea, I.; Vial, S.; Rivas, J.; Calo-Mata, P.; Barros-Velázquez, J. Advanced DNA- and protein-based methods for the detection and investigation of food allergens. Crit. Rev. Food Sci. Nutr., 2016, 56(15), 2511-2542.
[http://dx.doi.org/10.1080/10408398.2013.873767] [PMID: 25848852]
[28]
Crowther, J.R. The ELISA Guidebook. Methods Mol. Biol, 2nd ed; Humana Press: New Jersey, 2009.
[http://dx.doi.org/10.1007/978-1-60327-254-4]
[29]
Jansen van Vuren, P.; Potgieter, A.C.; Paweska, J.T.; van Dijk, A.A. Preparation and evaluation of a recombinant Rift Valley fever virus N protein for the detection of IgG and IgM antibodies in humans and animals by indirect ELISA. J. Virol. Methods, 2007, 140(1-2), 106-114.
[http://dx.doi.org/10.1016/j.jviromet.2006.11.005] [PMID: 17174410]
[30]
Godfroid, J.; Nielsen, K.; Saegerman, C. Diagnosis of brucellosis in livestock and wildlife. Croat. Med. J., 2010, 51(4), 296-305.
[http://dx.doi.org/10.3325/cmj.2010.51.296] [PMID: 20718082]
[31]
Kirsch, S.; Fourdrilis, S.; Dobson, R.; Scippo, M.L.; Maghuin-Rogister, G.; De Pauw, E. Quantitative methods for food allergens: A review. Anal. Bioanal. Chem., 2009, 395(1), 57-67.
[http://dx.doi.org/10.1007/s00216-009-2869-7] [PMID: 19543718]
[32]
Pandey, A.; Mann, M. Proteomics to study genes and genomes. Nature, 2000, 405(6788), 837-846.
[http://dx.doi.org/10.1038/35015709] [PMID: 10866210]
[33]
McLafferty, F.W.; Breuker, K.; Jin, M.; Han, X.; Infusini, G.; Jiang, H.; Kong, X.; Begley, T.P. Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J., 2007, 274(24), 6256-6268.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06147.x] [PMID: 18021240]
[34]
Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999, 20(18), 3551-3567.
[http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:183551::AID-ELPS35513.0.CO;2-2] [PMID: 10612281]
[35]
Tanabe, S.; Miyauchi, E.; Muneshige, A.; Mio, K.; Sato, C.; Sato, M. PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods. Biosci. Biotechnol. Biochem., 2007, 71(7), 1663-1667.
[http://dx.doi.org/10.1271/bbb.70075] [PMID: 17617732]
[36]
Bettazzi, F.; Lucarelli, F.; Palchetti, I.; Berti, F.; Marrazza, G.; Mascini, M. Disposable electrochemical DNA-array for PCR amplified detection of hazelnut allergens in foodstuffs. Anal. Chim. Acta, 2008, 614(1), 93-102.
[http://dx.doi.org/10.1016/j.aca.2008.03.027] [PMID: 18405686]
[37]
Scaravelli, E.; Brohée, M.; Marchelli, R.; van Hengel, A. Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur. Food Res. Technol., 2008, 227(3), 857-869.
[http://dx.doi.org/10.1007/s00217-007-0797-3]
[38]
Köppel, R.; Dvorak, V.; Zimmerli, F.; Breitenmoser, A.; Eugster, A.; Waiblinger, H.U. Two tetraplex real-time PCR for the detection and quantification of DNA from eight allergens in food. Eur. Food Res. Technol., 2010, 230(3), 367-374.
[http://dx.doi.org/10.1007/s00217-009-1164-3]
[39]
Pafundo, S.; Gullì, M.; Marmiroli, N. Multiplex real-time PCR using SYBR® GreenER™ for the detection of DNA allergens in food. Anal. Bioanal. Chem., 2010, 396(5), 1831-1839.
[http://dx.doi.org/10.1007/s00216-009-3419-z] [PMID: 20087728]
[40]
García, A.; Madrid, R.; García, T. Detection of food allergens by taqman real-time PCR methodology. Methods Mol. Biol., 2011, 75, 39-44.
[41]
Słowianek, M.; Majak, I. Methods of allergen detection based on DNA analysis. Biotechnol. Food Sci, 2011, 75, 39-44.
[42]
Poms, R.E.; Anklam, E.; Kuhn, M. Polymerase chain reaction techniques for food allergen detection. J. AOAC Int., 2004, 87(6), 1391-1397.
[http://dx.doi.org/10.1093/jaoac/87.6.1391] [PMID: 15675451]
[43]
Scognamiglio, V.; Arduini, F.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. TrAC. Trends Analyt. Chem., 2014, 62, 1-10.
[http://dx.doi.org/10.1016/j.trac.2014.07.007]
[44]
Bahadir, E.B.; Sezgintürk, M.K. Biosensor technologies for analysis of food contaminants. In: Nanobiosensors; Grumezescu, A.M., Ed.; Academic Press, Elsevier: London, 2017; 8, pp. 289-337.
[http://dx.doi.org/10.1016/B978-0-12-804301-1.00008-4]
[45]
Gezer, P.G.; Liu, G.L.; Kokini, J.L. Development of a biodegradable sensor platform from gold coated zein nanophotonic films to detect peanut allergen, Ara h1, using surface enhanced raman spectroscopy. Talanta, 2016, 150, 224-232.
[http://dx.doi.org/10.1016/j.talanta.2015.12.034] [PMID: 26838403]
[46]
Dumitru, L.M.; Irimia-Vladu, M.; Sariciftci, N.S. Biocompatible integration of electronics into food sensors. Compr. Anal. Chem., 2016, 74, 247-271.
[http://dx.doi.org/10.1016/bs.coac.2016.04.009]
[47]
Nishi, K.; Isobe, S.; Zhu, Y.; Kiyama, R. Fluorescence-based bioassays for the detection and evaluation of food materials. Sensors (Basel), 2015, 15(10), 25831-25867.
[http://dx.doi.org/10.3390/s151025831] [PMID: 26473869]
[48]
Anpelković U.; Martinović T.; Josić D. Foodomic investigations of food allergies. Curr. Opin. Food Sci., 2015, 4, 92-98.
[http://dx.doi.org/10.1016/j.cofs.2015.06.003]
[49]
Ashley, J.; Piekarska, M.; Segers, C.; Trinh, L.; Rodgers, T.; Willey, R.; Tothill, I.E. An SPR based sensor for allergens detection. Biosens. Bioelectron., 2017, 88, 109-113.
[http://dx.doi.org/10.1016/j.bios.2016.07.101] [PMID: 27503408]
[50]
Pollet, J.; Delport, F.; Janssen, K.P.; Tran, D.T.; Wouters, J.; Verbiest, T.; Lammertyn, J. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta, 2011, 83(5), 1436-1441.
[http://dx.doi.org/10.1016/j.talanta.2010.11.032] [PMID: 21238733]
[51]
Guo, L.; Jackman, J.; Yang, H.; Chen, P.; Cho, N.; Kim, D. Strategies for enhancing the sensitivity of plasmonic nano sensors. Nano Today, 2015, 10(2), 213-239.
[http://dx.doi.org/10.1016/j.nantod.2015.02.007]
[52]
de la Cruz, S.; López-Calleja, I.; Martín, R.; González, I.; Alcocer, M.; García, T. Recent advances in the detection of allergens in foods. Food Allergen, 2017, 1592, 263-295.
[http://dx.doi.org/10.1007/978-1-4939-6925-8_20] [PMID: 28315226]
[53]
Badea, M.; Vezeanu, A.; Vasilescu, A. Electrochemical impedance spectroscopy investigations focused on food allergens. Sensing Electroanal., 2014, 8, 59-83.
[54]
Alves, R.C.; Pimentel, F.B.; Nouws, H.P.; Marques, R.C.; González-García, M.B.; Oliveira, M.B.; Delerue-Matos, C. Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosens. Bioelectron., 2015, 64, 19-24.
[http://dx.doi.org/10.1016/j.bios.2014.08.026] [PMID: 25173734]
[55]
Martín-Fernández, B.; Manzanares-Palenzuela, C.L.; López, M.S. de-los-santos-Alvarez, N. Electrochemical genosensors in food safety assessment. Crit. Rev. Food Sci. Nutr., 2015, 3, 2758-2774.
[56]
Vasilescu, A.; Nunes, G.; Hayat, A.; Latif, U.; Marty, J.L. Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors (Basel), 2016, 16(11), 1863.
[http://dx.doi.org/10.3390/s16111863] [PMID: 27827963]
[57]
Zeng, Q.; Zhang, Y.; Liu, X.; Tu, L.; Kong, X.; Zhang, H. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chem. Commun. (Camb.), 2012, 48(12), 1781-1783.
[http://dx.doi.org/10.1039/c2cc16271g] [PMID: 22218498]
[58]
He, X.; Hwang, H.M. Nanotechnology in food science: Functionality, applicability, and safety assessment. J. Food Drug Anal., 2016, 24(4), 671-681.
[http://dx.doi.org/10.1016/j.jfda.2016.06.001] [PMID: 28911604]
[59]
Grinyte, R.; Barroso, J.; Möller, M.; Saa, L.; Pavlov, V. Microbead QD-ELISA: Microbead ELISA using biocatalytic formation of quantum dots for ultra high sensitive optical and electrochemical detection. ACS Appl. Mater. Interfaces, 2016, 8(43), 29252-29260.
[http://dx.doi.org/10.1021/acsami.6b08362] [PMID: 27753498]
[60]
Pan, M.; Yin, Z.; Liu, K.; Du, X.; Liu, H.; Wang, S. Carbon-based nanomaterials in sensors for food safety. Nanomaterials (Basel), 2019, 9(9), 1330.
[http://dx.doi.org/10.3390/nano9091330] [PMID: 31533228]
[61]
Joyner, J.J.; Kumar, D.V. Nanosensors and their applications in food analysis: A review. Int. J. Sci. Technol., 2015, 3, 80-90.
[62]
Vaculovicova, M.; Michalek, P.; Krizkova, S.; Macka, M.; Adam, V. Nanotechnology-based analytical approaches for detection of viruses. Anal. Methods, 2017, 9(16), 2375-2391.
[http://dx.doi.org/10.1039/C7AY00048K]
[63]
Warriner, K.; Reddy, S.M.; Namvar, A.; Neethirajan, S. Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci. Technol., 2014, 40(2), 183-199.
[http://dx.doi.org/10.1016/j.tifs.2014.07.008]
[64]
Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron., 2015, 73, 47-63.
[http://dx.doi.org/10.1016/j.bios.2015.05.050] [PMID: 26043315]
[65]
Bruno, J.G. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens, 2014, 3(2), 341-355.
[http://dx.doi.org/10.3390/pathogens3020341] [PMID: 25437803]
[66]
Pérez-Ruiz, E.; Lammertyn, J.; Spasic, D. Evaluation of different strategies for magnetic particle functionalization with DNA aptamers. N. Biotechnol., 2016, 33(6), 755-762.
[http://dx.doi.org/10.1016/j.nbt.2016.06.1459] [PMID: 27318011]
[67]
Herranz, F.; Schmidt-Weber, C.B.; Shamji, M.H.; Narkus, A.; Ruiz-Cabello, J.; Vilar, R. Superparamagnetic iron oxide nanoparticles conjugated to a grass pollen allergen and an optical probe. Contrast Media Mol. Imaging, 2012, 7(4), 435-439.
[http://dx.doi.org/10.1002/cmmi.1466] [PMID: 22649050]
[68]
Alvarez, P.A.; Boye, J.I. Food production and processing considerations of allergenic food ingredients: A review. J. Allergy (Cairo), 2012, 2012, 746125.
[http://dx.doi.org/10.1155/2012/746125] [PMID: 22187573]
[69]
Pilolli, R.; Monaci, L.; Visconti, A. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. Trends Analyt. Chem., 2013, 47, 12-26.
[http://dx.doi.org/10.1016/j.trac.2013.02.005]
[70]
Bose, P.; Mandal, G.; Chatterjee, U.; Singh, M.; Chatterjee, B. Gold nanoparticles-based novel visual diagnostic method for the detection of specific IgE test for food allergens. Anal. Methods, 2016, 19(19), 3878-3884.
[http://dx.doi.org/10.1039/C5AY03387J]
[71]
Bhattacharya, B.; Singha, S.; Basu, S. Fluorescent nanosensors: Rapid tool for detection of food contaminants. In: Nanobiosensors; Grumezescu, A.M., Ed.; Academic Press: Cambridge, 2017; pp. 1-10.
[http://dx.doi.org/10.1016/B978-0-12-804301-1.00020-5]
[72]
Nehra, M.; Lettieri, M.; Dilbaghi, N.; Kumar, S.; Marrazza, G. Nano-biosensing platforms for detection of cow’s milk allergens: An overview. Sensors (Basel), 2019, 20(1), 1-32.
[http://dx.doi.org/10.3390/s20010032] [PMID: 31861555]
[73]
Zhou, J.; Qi, Q.; Wang, C.; Qian, Y.; Liu, G.; Wang, Y.; Fu, L. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens. Bioelectron., 2019, 142, 111449.
[http://dx.doi.org/10.1016/j.bios.2019.111449] [PMID: 31279816]
[74]
Shafiq, M.; Anjum, S.; Hano, C.; Anjum, I.; Abbasi, B.H. An overview of the applications of nanomaterials and nanodevices in the food industry. Foods, 2020, 9(2), 2-10.
[http://dx.doi.org/10.3390/foods9020148] [PMID: 32028580]
[75]
Kumar, S.; Verma, A.K.; Das, M.; Dwivedi, P.D. Allergenic diversity among plant and animal food proteins. Food Rev. Int., 2012, 28(3), 277-298.
[http://dx.doi.org/10.1080/87559129.2011.635391]
[76]
Krishna, V.D.; Wu, K.; Su, D.; Cheeran, M.C.J.; Wang, J.P.; Perez, A. Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food Microbiol., 2018, 75, 47-54.
[http://dx.doi.org/10.1016/j.fm.2018.01.025] [PMID: 30056962]
[77]
Vogelbruch, M.; Nuss, B.; Körner, M.; Kapp, A.; Kiehl, P.; Bohm, W. Aluminium-induced granulomas after inaccurate intradermal hyposensitization injections of aluminium-adsorbed depot preparations. Allergy, 2000, 55(9), 883-887.
[PMID: 11003454]
[78]
Gamazo, C.; Gastaminza, G.; Ferrer, M.; Sanz, M.L.; Irache, J.M. Nanoparticle based-immunotherapy against allergy. Immunotherapy, 2014, 6(7), 885-897.
[http://dx.doi.org/10.2217/imt.14.63] [PMID: 25290419]
[79]
Pali-Schöll, I.; Szöllösi, H.; Starkl, P.; Scheicher, B.; Stremnitzer, C.; Hofmeister, A.; Roth-Walter, F.; Lukschal, A.; Diesner, S.C.; Zimmer, A.; Jensen-Jarolim, E. Protamine nanoparticles with CpG-oligodeoxynucleotide prevent an allergen-induced Th2-response in BALB/c mice. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt A), 656-664.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.003] [PMID: 23523543]
[80]
Palmer, B.C.; Jatana, S.; Phelan-Dickinson, S.J.; DeLouise, L.A. Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact dermatitis. Sci. Rep., 2019, 9(1), 5085.
[http://dx.doi.org/10.1038/s41598-019-41493-7] [PMID: 30911099]
[81]
Johnson, L.; Duschl, A.; Himly, M. Nanotechnology-based vaccines for allergen-specific immunotherapy: Potentials and challenges of conventional and novel adjuvants under research. Vaccines (Basel), 2020, 8(2), 237.
[http://dx.doi.org/10.3390/vaccines8020237] [PMID: 32443671]
[82]
Xiao, X.; Zeng, X.; Zhang, X.; Ma, L.; Liu, X.; Yu, H.; Mei, L.; Liu, Z. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Int. J. Nanomedicine, 2013, 8, 4553-4562.
[PMID: 24376349]
[83]
Flemming, A. Autoimmunity: Nanoparticles engineered for antigen-specific immunotherapy. Nat. Rev. Immunol., 2016, 16(4), 204-205.
[http://dx.doi.org/10.1038/nri.2016.39] [PMID: 27026072]
[84]
Zolnik, B.S.; González-Fernández, A.; Sadrieh, N.; Dobrovolskaia, M.A. Nanoparticles and the immune system. Endocrinology, 2010, 151(2), 458-465.
[http://dx.doi.org/10.1210/en.2009-1082] [PMID: 20016026]
[85]
Nagata, M.; Nakagome, K. Allergen immunotherapy in asthma: Current status and future perspectives. Allergol. Int., 2010, 59(1), 15-19.
[http://dx.doi.org/10.2332/allergolint.09-RAI-0150] [PMID: 20093852]
[86]
Jutel, M.; Agache, I.; Bonini, S.; Burks, A.W.; Calderon, M.; Canonica, W.; Cox, L.; Demoly, P.; Frew, A.J.; O’Hehir, R.; Kleine-Tebbe, J.; Muraro, A.; Lack, G.; Larenas, D.; Levin, M.; Nelson, H.; Pawankar, R.; Pfaar, O.; van Ree, R.; Sampson, H.; Santos, A.F.; Du Toit, G.; Werfel, T.; Gerth van Wijk, R.; Zhang, L.; Akdis, C.A. International consensus on allergy immunotherapy. J. Allergy Clin. Immunol., 2015, 136(3), 556-568.
[http://dx.doi.org/10.1016/j.jaci.2015.04.047] [PMID: 26162571]
[87]
Virkud, Y.V.; Wang, J.; Shreffler, W.G. Enhancing the safety and efficacy of food allergy immunotherapy: A review of adjunctive therapies. Clin. Rev. Allergy Immunol., 2018, 55(2), 172-189.
[http://dx.doi.org/10.1007/s12016-018-8694-z] [PMID: 29968170]
[88]
Brotons-Canto, A.; Gamazo, C.; Martín-Arbella, N.; Abdulkarim, M.; Gumbleton, M.; Quincoces, G.; Peñuelas, I.; Irache, J.M. Mannosylated nanoparticles for oral immunotherapy in a murine model of peanut allergy. J. Pharm. Sci., 2019, 108(7), 2421-2429.
[http://dx.doi.org/10.1016/j.xphs.2019.02.022] [PMID: 30849462]
[89]
Shrivastava, K.; Alissa, S.; Tarek, M.; Michel, C. Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine mode of peanut allergy. J. Allergy (Cairo), 2016, 2, 36-543.
[90]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[91]
Csaba, N.; Garcia-Fuentes, M.; Alonso, M.J. Nanoparticles for nasal vaccination. Adv. Drug Deliv. Rev., 2009, 61(2), 140-157.
[http://dx.doi.org/10.1016/j.addr.2008.09.005] [PMID: 19121350]
[92]
Balenga, N.A.; Zahedifard, F.; Weiss, R.; Sarbolouki, M.N.; Thalhamer, J.; Rafati, S. Protective efficiency of dendrosomes as novel nano-sized adjuvants for DNA vaccination against birch pollen allergy. J. Biotechnol., 2006, 124(3), 602-614.
[http://dx.doi.org/10.1016/j.jbiotec.2006.01.014] [PMID: 16515817]
[93]
Gómez, S.; Gamazo, C.; San Roman, B.; Ferrer, M.; Sanz, M.L.; Espuelas, S.; Irache, J.M. Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis. Eur. J. Pharm. Biopharm., 2008, 70(3), 711-717.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.016] [PMID: 18582571]
[94]
Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front. Pharmacol., 2016, 7, 185.
[http://dx.doi.org/10.3389/fphar.2016.00185] [PMID: 27445821]
[95]
Peek, L.J.; Middaugh, C.R.; Berkland, C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev., 2008, 60(8), 915-928.
[http://dx.doi.org/10.1016/j.addr.2007.05.017] [PMID: 18325628]
[96]
Combadière, B.; Mahé, B. Particle-based vaccines for transcutaneous vaccination. Comp. Immunol. Microbiol. Infect. Dis., 2008, 31(2-3), 293-315.
[http://dx.doi.org/10.1016/j.cimid.2007.07.015] [PMID: 17915323]
[97]
Kwon, Y.J.; Standley, S.M.; Goh, S.L.; Fréchet, J.M. Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J. Control. Release, 2005, 105(3), 199-212.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.027] [PMID: 15935507]
[98]
Gu, Z.; Biswas, A.; Zhao, M.; Tang, Y. Tailoring nanocarriers for intracellular protein delivery. Chem. Soc. Rev., 2011, 40(7), 3638-3655.
[http://dx.doi.org/10.1039/c0cs00227e] [PMID: 21566806]
[99]
Pohlit, H.; Bellinghausen, I.; Frey, H.; Saloga, J. Recent advances in the use of nanoparticles for allergen-specific immunotherapy. Allergy, 2017, 72(10), 1461-1474.
[http://dx.doi.org/10.1111/all.13199] [PMID: 28474379]
[100]
Klimek, L.; Schmidt-Weber, C.B.; Kramer, M.F.; Skinner, M.A.; Heath, M.D. Clinical use of adjuvants in allergen-immunotherapy. Expert Rev. Clin. Immunol., 2017, 13(6), 599-610.
[http://dx.doi.org/10.1080/1744666X.2017.1292133] [PMID: 28162007]
[101]
Chew, J.L.; Wolfowicz, C.B.; Mao, H.Q.; Leong, K.W.; Chua, K.Y. Chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen, Der p 1 for oral vaccination in mice. Vaccine, 2003, 21(21-22), 2720-2729.
[http://dx.doi.org/10.1016/S0264-410X(03)00228-7] [PMID: 12798609]
[102]
Saint-Lu, N.; Tourdot, S.; Razafindratsita, A.; Mascarell, L.; Berjont, N.; Chabre, H.; Louise, A.; Van Overtvelt, L.; Moingeon, P. Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction. Allergy, 2009, 64(7), 1003-1013.
[http://dx.doi.org/10.1111/j.1398-9995.2009.01945.x] [PMID: 19220212]
[103]
Martins, R.P.; Ostermeier, G.C.; Krawetz, S.A. Nuclear matrix interactions at the human protamine domain: A working model of potentiation. J. Biol. Chem., 2004, 279(50), 51862-51868.
[http://dx.doi.org/10.1074/jbc.M409415200] [PMID: 15452126]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy