Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

A Detailed Review of Various Herbal Treatment Options for Potentially Curing or Ameliorating Pain in Diabetic Neuropathy

Author(s): Pranay Wal*, Priya Singh and Aparna Sinha

Volume 9, Issue 2, 2023

Published on: 27 August, 2022

Article ID: e250422203995 Pages: 18

DOI: 10.2174/2215083808666220425102520

Price: $65

Abstract

Diabetes mellitus (DM) is a group of metabolic disorders associated with hyperglycemia due to deficient insulin secretion, insulin action, or both. In 2008, out of 36 million deaths due to non-communicable diseases, 1.3 million deaths alone were causative of DM, suggesting it to be a significant public health problem, reaching epidemic proportions globally. Diabetic Neuropathy is a common complication of DM. The pathophysiology of DN involves the interplay of metabolic and vascular factors, with the principal factor being hyperglycemia. Since DN is a prevalent, disabling condition associated with nerve injury, efficient treatments include glycaemic control and pain management. The ancient scriptures like Charak Samhita and modern pharmacology have corroborated the vast medicinal potential of herbal plants for achieving a more holistic treatment for several ailments. One of the primary objectives of the current review was to provide collective data on the available pharmacological evidence of selective herbal plants for future clinical translation. Also, the herbal extracts used in the studies need to be standardised according to standard protocols. This is important for understanding the complex effect of specific phytoconstituents at the biomolecular level and determining the clinical dose to make results more repeatable.

Keywords: Diabetes mellitus, diabetic neuropathy, Momocardia charantia, Curcuma longa, Emblica officinalis, ameliorating pain.

[1]
American Diabetes. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33 (Suppl. 1): S62-9.
[2]
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon) 2019; 47(1): 22-7.
[http://dx.doi.org/10.1016/j.mpmed.2018.10.004]
[3]
Hicks CW, Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr Diab Rep 2019; 19(10): 86.
[http://dx.doi.org/10.1007/s11892-019-1212-8] [PMID: 31456118]
[4]
Agathos E, Tentolouris A, Eleftheriadou I, et al. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J Int Med Res 2018; 46(5): 1779-90.
[http://dx.doi.org/10.1177/0300060518756540] [PMID: 29517942]
[5]
Dejgaard A. Pathophysiology and treatment of diabetic neuropathy. Diabet Med 1998; 15(2): 97-112.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199802)15:2<97:AID-DIA523>3.0.CO;2-5] [PMID: 9507909]
[6]
Abdel-Wahhab KG, Daoud EM, El Gendy A, Mourad HH, Mannaa FA, Saber MM. Efficiencies of low-level laser therapy (LLLT) and gabapentin in the management of peripheral neuropathy: diabetic neuropathy. Appl Biochem Biotechnol 2018; 186(1): 161-73.
[http://dx.doi.org/10.1007/s12010-018-2729-z] [PMID: 29527628]
[7]
Thomas P. Classification of the diabetic neuropathies.In: Textbook of diabetic neuropathy. (1st ed.). Leipzig, Germany: Thieme Medical Publishers 2003; pp. 175-7.
[8]
Meijer J-WG, Bosma E, Lefrandt JD, et al. Clinical diagnosis of diabetic polyneuropathy with the diabetic neuropathy symptom and diabetic neuropathy examination scores. Diabetes Care 2003; 26(3): 697-701.
[http://dx.doi.org/10.2337/diacare.26.3.697] [PMID: 12610024]
[9]
Griebeler ML, Morey-Vargas OL, Brito JP, et al. Pharmacologic interventions for painful diabetic neuropathy: An umbrella systematic review and comparative effectiveness network meta-analysis. Ann Intern Med 2014; 161(9): 639-49.
[http://dx.doi.org/10.7326/M14-0511] [PMID: 25364885]
[10]
Wong MC, Chung JW, Wong TK. Effects of treatments for symptoms of painful diabetic neuropathy: Systematic review. BMJ 2007; 335(7610): 87.
[http://dx.doi.org/10.1136/bmj.39213.565972.AE] [PMID: 17562735]
[11]
Azmi S, Ferdousi M, Kalteniece A, et al. Diagnosing and managing diabetic somatic and autonomic neuropathy. Ther Adv Endocrinol Metab 2019; 102042018819826890
[http://dx.doi.org/10.1177/2042018819826890] [PMID: 30783521]
[12]
Lane JCE, Craig RS, Rees JL, et al. Serious postoperative complications and reoperation after carpal tunnel decompression surgery in England: A nationwide cohort analysis. Lancet Rheumatol 2020; 3(1): e49-57.
[http://dx.doi.org/10.1016/S2665-9913(20)30238-1] [PMID: 33381769]
[13]
Majumdar S, Gupta S, Prajapati SK, Krishnamurthy S. Neuro-nutraceutical potential of Asparagus racemosus: A review. Neurochem Int 2021; 145105013
[http://dx.doi.org/10.1016/j.neuint.2021.105013] [PMID: 33689806]
[14]
Ellis RJ, Toperoff W, Vaida F, et al. Smoked medicinal cannabis for neuropathic pain in HIV: A randomized, crossover clinical trial. Neuropsychopharmacology 2009; 34(3): 672-80.
[http://dx.doi.org/10.1038/npp.2008.120] [PMID: 18688212]
[15]
Nurmikko TJ, Serpell MG, Hoggart B, Toomey PJ, Morlion BJ, Haines D. Sativex successfully treats neuropathic pain characterised by allodynia: A randomised, double-blind, placebo-controlled clinical trial. Pain 2007; 133(1-3): 210-20.
[http://dx.doi.org/10.1016/j.pain.2007.08.028] [PMID: 17997224]
[16]
Rostami N, Mosavat SH, Heydarirad G, Arbab Tafti R, Heydari M. Efficacy of topical citrullus colocynthis (bitter apple) extract oil in chemotherapy-induced peripheral neuropathy: A pilot double-blind randomized placebo-controlled clinical trial. Phytother Res 2019; 33(10): 2685-91.
[http://dx.doi.org/10.1002/ptr.6442] [PMID: 31373112]
[17]
Sahoo P, Pradhan D, Behera P. Neuroprotective effect of Bacopa monnieri leaf extract targeted at adenosine receptor in diabetic neuropathic pain. J Pharm Res 2010; 3(8): 1806-9.
[18]
Alamgir AN. Pharmacopoeia and herbal monograph, the aim and use of WHO’s herbal monograph, WHO’s guide lines for herbal monograph, pharmacognostical research and monographs of organized, unorganized drugs and drugs from animal sources Therapeutic Use of Medicinal Plants and Their Extracts. Cham: Springer 2017; Vol. 1: pp. 295-353.
[19]
Dewanjee S, Das S, Das AK, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833: 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[20]
Hao W, Tashiro S, Hasegawa T, et al. Hyperglycemia promotes Schwann cell de-differentiation and de-myelination via sorbitol accumulation and Igf1 protein down-regulation. J Biol Chem 2015; 290(28): 17106-15.
[http://dx.doi.org/10.1074/jbc.M114.631291] [PMID: 25998127]
[21]
Kaur S, Pandhi P, Dutta P. Painful diabetic neuropathy: An update. Ann Neurosci 2011; 18(4): 168-75.
[http://dx.doi.org/10.5214/ans.0972.7531.1118409] [PMID: 25205950]
[22]
Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol 2012; 11(6): 521-34.
[http://dx.doi.org/10.1016/S1474-4422(12)70065-0] [PMID: 22608666]
[23]
Kles KA, Vinik AI. Pathophysiology and treatment of diabetic peripheral neuropathy: The case for diabetic neurovascular function as an essential component. Curr Diabetes Rev 2006; 2(2): 131-45.
[http://dx.doi.org/10.2174/157339906776818569] [PMID: 18220622]
[24]
Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin Pharmacol Toxicol 2005; 96(6): 399-409.
[http://dx.doi.org/10.1111/j.1742-7843.2005.pto_96696601.x] [PMID: 15910402]
[25]
Lee Y-C, Chen P-P. A review of SSRIs and SNRIs in neuropathic pain. Expert Opin Pharmacother 2010; 11(17): 2813-25.
[http://dx.doi.org/10.1517/14656566.2010.507192] [PMID: 20642317]
[26]
Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res 2013; 36(3): 237-51.
[http://dx.doi.org/10.1007/s12272-013-0057-y] [PMID: 23435945]
[27]
Dworkin RH, Kirkpatrick P. Pregabalin. Nat Rev Drug Discov 2005; 4(6): 455-6.
[http://dx.doi.org/10.1038/nrd1756] [PMID: 15959952]
[28]
Eisenberg E, Shifrin A, Krivoy N. Lamotrigine for neuropathic pain. Expert Rev Neurother 2005; 5(6): 729-35.
[http://dx.doi.org/10.1586/14737175.5.6.729] [PMID: 16274331]
[29]
Raffa RB, et al. Oxycodone combinations for pain relief. Drugs of today 2010; 46(6): 379-98.
[http://dx.doi.org/10.1358/dot.2010.46.6.1470106]
[30]
Bravo L, Mico JA, Berrocoso E. Discovery and development of tramadol for the treatment of pain. Expert Opin Drug Discov 2017; 12(12): 1281-91.
[http://dx.doi.org/10.1080/17460441.2017.1377697] [PMID: 28920461]
[31]
Weinbroum AA, Rudick V, Paret G, Ben-Abraham R. The role of dextromethorphan in pain control. Can J Anaesth 2000; 47(6): 585-96.
[http://dx.doi.org/10.1007/BF03018952] [PMID: 10875724]
[32]
Casellini CM, Barlow PM, Rice AL, et al. A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-β inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care 2007; 30(4): 896-902.
[http://dx.doi.org/10.2337/dc06-1699] [PMID: 17392551]
[33]
Vo T, Rice ASC, Dworkin RH. Non-steroidal anti-inflammatory drugs for neuropathic pain: How do we explain continued widespread use? Pain 2009; 143(3): 169-71.
[http://dx.doi.org/10.1016/j.pain.2009.03.013] [PMID: 19362418]
[34]
Salehi H, Moussaei M, Kamiab Z, Vakilian A. The effects of botulinum toxin type A injection on pain symptoms, quality of life, and sleep quality of patients with diabetic neuropathy: A randomized double-blind clinical trial. Iran J Neurol 2019; 18(3): 99-107.
[http://dx.doi.org/10.18502/ijnl.v18i3.1632] [PMID: 31749930]
[35]
Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine 2014; 21(3): 268-76.
[http://dx.doi.org/10.1016/j.phymed.2013.09.020] [PMID: 24200497]
[36]
Ozturk M, Hakeem KR. Plant and human health. Springer Nature 2018; 1(11): 409-61.
[37]
Kafi M, Kamili AN, Husaini AM, et al. An expensive spice - Saffron (Crocus sativus L.) - Case study from Kashmir, Iran and Turkey. In: Global Perspectives on Underutilized Crops. Springer International Publishing 2018; pp. 109-49.
[38]
Ozturk M, Altay V, Gönenç TM, et al. An overview of olive cultivation in Turkey: Botanical features, eco-physiology and phytochemical aspects. Agronomy (Basel) 2021; 11(2): 295.
[http://dx.doi.org/10.3390/agronomy11020295]
[39]
Malik K, Ahmad M, Öztürk M, et al. Herbals of Asia - Prevalent diseases and their treatments. Springer International Publishing 2021; p. 507.
[http://dx.doi.org/10.1007/978-3-030-85222-1]
[40]
Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of vacha (Acorus calamus Linn.) in neurological and metabolic disorders: Evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J Clin Med 2020; 9(4): 1176.
[http://dx.doi.org/10.3390/jcm9041176] [PMID: 32325895]
[41]
Shukla PK, Khanna VK, Ali MM, Maurya R, Khan MY, Srimal RC. Neuroprotective effect of Acorus calamus against middle cerebral artery occlusion-induced ischaemia in rat. Hum Exp Toxicol 2006; 25(4): 187-94.
[http://dx.doi.org/10.1191/0960327106ht613oa] [PMID: 16696294]
[42]
Hazra R, Ray K, Guha D. Inhibitory role of Acorus calamus in ferric chloride-induced epileptogenesis in rat. Hum Exp Toxicol 2007; 26(12): 947-53.
[http://dx.doi.org/10.1177/0960327107087791] [PMID: 18375638]
[43]
Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah AM. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int J Prev Med 2018; 9(1): 85.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_75_18] [PMID: 30450168]
[44]
Anand U, Tudu CK, Nandy S, et al. Ethnodermatological use of medicinal plants in India: From ayurvedic formulations to clinical perspectives - A review. J Ethnopharmacol 2022; 284114744
[http://dx.doi.org/10.1016/j.jep.2021.114744] [PMID: 34656666]
[45]
Zanoli P, Avallone R, Baraldi M. Sedative and hypothermic effects induced by β‐asarone, a main component of Acorus calamus. Phytother Res 1998; 12(S1): S114-6.
[http://dx.doi.org/10.1002/(SICI)1099-1573(1998)12:1+<S114:AID-PTR268>3.0.CO;2-E]
[46]
Bhattacharyya D, et al. A clinical study on the management of generalized anxiety disorder with Vaca (Acorus calamus). Indian J Tradit Knowl 2011; 10(4): 668-71.
[47]
Muthuraman A, Singh N. Attenuating effect of hydroalcoholic extract of Acorus calamus in vincristine-induced painful neuropathy in rats. J Nat Med 2011; 65(3-4): 480-7.
[http://dx.doi.org/10.1007/s11418-011-0525-y] [PMID: 21404093]
[48]
Muthuraman A, Singh N, Jaggi AS. Protective effect of Acorus calamus L. in rat model of vincristine induced painful neuropathy: An evidence of anti-inflammatory and anti-oxidative activity. Food Chem Toxicol 2011; 49(10): 2557-63.
[http://dx.doi.org/10.1016/j.fct.2011.06.069] [PMID: 21756962]
[49]
Muthuraman A, Singh N. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: An evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects. BMC Complement Altern Med 2011; 11(1): 24.
[http://dx.doi.org/10.1186/1472-6882-11-24] [PMID: 21426568]
[50]
Muthuraman A, Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. J Ethnopharmacol 2012; 142(3): 723-31.
[http://dx.doi.org/10.1016/j.jep.2012.05.049] [PMID: 22706151]
[51]
Muthuraman A, Singh N, Jaggi AS. Effect of hydroalcoholic extract of Acorus calamus on tibial and sural nerve transection-induced painful neuropathy in rats. J Nat Med 2011; 65(2): 282-92.
[http://dx.doi.org/10.1007/s11418-010-0486-6] [PMID: 21153448]
[52]
van de Donk T, Niesters M, Kowal MA, Olofsen E, Dahan A, van Velzen M. An experimental randomized study on the analgesic effects of pharmaceutical-grade cannabis in chronic pain patients with fibromyalgia. Pain 2019; 160(4): 860-9.
[http://dx.doi.org/10.1097/j.pain.0000000000001464] [PMID: 30585986]
[53]
Barnes MP. Sativex: Clinical efficacy and tolerability in the treatment of symptoms of multiple sclerosis and neuropathic pain. Expert Opin Pharmacother 2006; 7(5): 607-15.
[http://dx.doi.org/10.1517/14656566.7.5.607] [PMID: 16553576]
[54]
Comelli F, Bettoni I, Colleoni M, Giagnoni G, Costa B. Beneficial effects of a Cannabis sativa extract treatment on diabetes-induced neuropathy and oxidative stress. Phytother Res 2009; 23(12): 1678-84.
[http://dx.doi.org/10.1002/ptr.2806] [PMID: 19441010]
[55]
Comelli F, Giagnoni G, Bettoni I, Colleoni M, Costa B. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: Mechanisms involved. Phytother Res 2008; 22(8): 1017-24.
[http://dx.doi.org/10.1002/ptr.2401] [PMID: 18618522]
[56]
Woolridge E, Barton S, Samuel J, Osorio J, Dougherty A, Holdcroft A. Cannabis use in HIV for pain and other medical symptoms. J Pain Symptom Manage 2005; 29(4): 358-67.
[http://dx.doi.org/10.1016/j.jpainsymman.2004.07.011] [PMID: 15857739]
[57]
Portenoy RK, Ganae-Motan ED, Allende S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: A randomized, placebo-controlled, graded-dose trial. J Pain 2012; 13(5): 438-49.
[http://dx.doi.org/10.1016/j.jpain.2012.01.003] [PMID: 22483680]
[58]
Sampathu S, Shivashankar S, Lewis YS, Wood AB. Saffron (Crocus sativus Linn.)—Cultivation, processing, chemistry and standardization. CRC Crit Rev Food Sci Nutr 1984; 20(2): 123-57.
[http://dx.doi.org/10.1080/10408398409527386]
[59]
Karkoula E, Lemonakis N, Kokras N, et al. Trans-crocin 4 is not hydrolyzed to crocetin following i.p. administration in mice, while it shows penetration through the blood brain barrier. Fitoterapia 2018; 129: 62-72.
[http://dx.doi.org/10.1016/j.fitote.2018.06.012] [PMID: 29920295]
[60]
Khazdair MR, Boskabady MH, Hosseini M, Rezaee R. M Tsatsakis A. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed 2015; 5(5): 376-91.
[PMID: 26468457]
[61]
Assimopoulou AN, Sinakos Z, Papageorgiou VP. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 2005; 19(11): 997-1000.
[http://dx.doi.org/10.1002/ptr.1749] [PMID: 16317646]
[62]
Mousavi SH, Tayarani NZ, Parsaee H. Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 2010; 30(2): 185-91.
[http://dx.doi.org/10.1007/s10571-009-9441-z] [PMID: 19711182]
[63]
Amin B, Hosseinzadeh H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia 2012; 83(5): 888-95.
[http://dx.doi.org/10.1016/j.fitote.2012.03.022] [PMID: 22484092]
[64]
Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. Indian Heart J 2017; 69(2): 151-9.
[http://dx.doi.org/10.1016/j.ihj.2016.09.008] [PMID: 28460761]
[65]
Moravej Aleali A, Amani R, Shahbazian H, Namjooyan F, Latifi SM, Cheraghian B. The effect of hydroalcoholic Saffron (Crocus sativus L.) extract on fasting plasma glucose, HbA1c, lipid profile, liver, and renal function tests in patients with type 2 diabetes mellitus: A randomized double-blind clinical trial. Phytother Res 2019; 33(6): 1648-57.
[http://dx.doi.org/10.1002/ptr.6351] [PMID: 30942510]
[66]
Amin B, Hosseini S, Hosseinzadeh H. Enhancement of antinociceptive effect by co-administration of amitriptyline and Crocus sativus in a rat model of neuropathic pain. Iran J Pharm Res 2017; 16(1): 187-200.
[PMID: 28496474]
[67]
Karłowicz-Bodalska K, Han S, Freier J, Smolenski M, Bodalska A. Curcuma longa as medicinal herb in the treatment of diabetic complications. Acta Pol Pharm 2017; 74(2): 605-10.
[PMID: 29624265]
[68]
Essa R, El Sadek AM, Baset ME, et al. Effects of turmeric (Curcuma longa) extract in streptozocin-induced diabetic model. J Food Biochem 2019; 43(9)e12988
[http://dx.doi.org/10.1111/jfbc.12988] [PMID: 31489664]
[69]
Arun N, Nalini N. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum Nutr 2002; 57(1): 41-52.
[http://dx.doi.org/10.1023/A:1013106527829] [PMID: 11855620]
[70]
Sukandar E, Permana H, Adnyana IK, et al. Clinical study of turmeric (Curcuma longa L.) and garlic (Allium sativum L.) extracts as antihyperglycemic and antihyperlipidemic agent in type-2 diabetes-dyslipidemia patients. Int J Pharmacol 2010; 6(4): 456-63.
[http://dx.doi.org/10.3923/ijp.2010.456.463]
[71]
Kafi M, Kamili AN, Husaini AM, et al. An expensive spice saffron (Crocus sativus L.): a case study from Kashmir, Iran, and Turkey. In: Global perspectives on underutilized crops. Cham: Springer 2018; pp. 109-49.
[72]
Maithili Karpaga Selvi N, Sridhar MG, Swaminathan RP, Sripradha R. Efficacy of turmeric as adjuvant therapy in type 2 diabetic patients. Indian J Clin Biochem 2015; 30(2): 180-6.
[http://dx.doi.org/10.1007/s12291-014-0436-2] [PMID: 25883426]
[73]
Yusuf M. Modern perspectives of curcumin and its derivatives as promising bioactive and pharmaceutical agents. Biointerface Res Appl Chem 2022; 2(6): 7177-204.
[http://dx.doi.org/10.33263/BRIAC126.71777204]
[74]
Babu PS, Srinivasan K. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol Cell Biochem 1997; 166(1-2): 169-75.
[http://dx.doi.org/10.1023/A:1006819605211] [PMID: 9046034]
[75]
Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S. Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 2003; 92(1): 33-8.
[http://dx.doi.org/10.1034/j.1600-0773.2003.920106.x] [PMID: 12710595]
[76]
Fujiwara H, Hosokawa M, Zhou X, et al. Curcumin inhibits glucose production in isolated mice hepatocytes. Diabetes Res Clin Pract 2008; 80(2): 185-91.
[http://dx.doi.org/10.1016/j.diabres.2007.12.004] [PMID: 18221818]
[77]
Hong J, Bose M, Ju J, et al. Modulation of arachidonic acid metabolism by curcumin and related β-diketone derivatives: Effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 2004; 25(9): 1671-9.
[http://dx.doi.org/10.1093/carcin/bgh165] [PMID: 15073046]
[78]
Srivastava R, Srimal R. Modification of certain inflammation-induced biochemical changes by curcumin. Indian J Med Res 1985; 81: 215-23.
[79]
Zhao W-C, Zhang B, Liao MJ, et al. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci Lett 2014; 560: 81-5.
[http://dx.doi.org/10.1016/j.neulet.2013.12.019] [PMID: 24370596]
[80]
Choi S-Z, Son M-W. Novel botanical drug for the treatment of diabetic neuropathy. Arch Pharm Res 2011; 34(6): 865-7.
[http://dx.doi.org/10.1007/s12272-011-0621-2] [PMID: 21660513]
[81]
Lee KA, Jin HY, Baek HS, Park TS. The protective effects of DA-9801 (Dioscorea extract) on the peripheral nerves in streptozotocin-induced diabetic rats. J Nutr Sci Vitaminol (Tokyo) 2013; 59(5): 437-46.
[http://dx.doi.org/10.3177/jnsv.59.437] [PMID: 24418878]
[82]
Kim N, Kim SH, Kim YJ, et al. Neurotrophic activity of DA-9801, a mixture extract of Dioscorea japonica Thunb. and Dioscorea nipponica Makino, in vitro. J Ethnopharmacol 2011; 137(1): 312-9.
[http://dx.doi.org/10.1016/j.jep.2011.05.032] [PMID: 21651968]
[83]
Moon E, Lee SO, Kang TH, et al. Dioscorea extract (DA-9801) modulates markers of peripheral neuropathy in type 2 diabetic db/db mice. Biomol Ther (Seoul) 2014; 22(5): 445-52.
[http://dx.doi.org/10.4062/biomolther.2014.051] [PMID: 25414776]
[84]
Won JH, et al. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells. Biol Pharm Bull 2014; b14-b00236.
[PMID: 25482167]
[85]
Cha Bongyeon GHS. Jeong inkyung study of DA-9801 to treat diabetic neuropathic pain, in a multicenter, placebo-controlled, randomized, double-blind, phase II clinical trial with diabetic neuropathy patients is designed to evaluate the safety and efficacy of the da-9801 tablet for neuropathic pain and to decide optimal dose. 2013. Available from: https://ClinicalTrials.gov/show/NCT01813799
[86]
Gupta S, Sahu AN. Glutathione: Induction of apoptosis and autophagy in cancer. Int J Pharm Sci Res 2020; 11(8): 3608-18.
[87]
Vos T, Allen C, Arora M, et al. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1545-602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
[88]
Suryanarayana P, Kumar AP, Saraswat M, et al. Inhibition of aldose reductase by tannoid principles of Emblica officinalis: Implications for the prevention of sugar cataract. Mol Vis 2004; 10: 148-54.
[89]
Puppala M, Ponder J, Suryanarayana P, Reddy GB, Petrash JM, LaBarbera DV. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One 2012; 7(4)e31399
[http://dx.doi.org/10.1371/journal.pone.0031399] [PMID: 22485126]
[90]
Kumar NP, Annamalai A, Thakur R. Antinociceptive property of Emblica officinalis Gaertn (Amla) in high fat diet-fed/low dose streptozotocin induced diabetic neuropathy in rats. Indian J Exp Biol 2009; 47(9): 737-42.
[91]
Tiwari V, Kuhad A, Chopra K. Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido-nitrosative stress mediated inflammatory cascade. Phytother Res 2011; 25(10): 1527-36.
[http://dx.doi.org/10.1002/ptr.3440] [PMID: 21394805]
[92]
Stanely Mainzen Prince P, Kumar MR, Selvakumari CJ. Effects of gallic acid on brain lipid peroxide and lipid metabolism in streptozotocin-induced diabetic Wistar rats. J Biochem Mol Toxicol 2011; 25(2): 101-7.
[http://dx.doi.org/10.1002/jbt.20365] [PMID: 20957663]
[93]
Iranshahy M, Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-a review. J Ethnopharmacol 2011; 134(1): 1-10.
[http://dx.doi.org/10.1016/j.jep.2010.11.067] [PMID: 21130854]
[94]
Mahendra P, Bisht S. Ferula asafoetida: Traditional uses and pharmacological activity. Pharmacogn Rev 2012; 6(12): 141-6.
[http://dx.doi.org/10.4103/0973-7847.99948] [PMID: 23055640]
[95]
Panahi Y, Khalili N, Sahebi E, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology 2017; 25(1): 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[96]
Bagheri SM, Dashti-R MH. Influence of asafoetida on prevention and treatment of memory impairment induced by d-galactose and NaNO2 in mice. Am J Alzheimers Dis Other Demen 2015; 30(6): 607-12.
[http://dx.doi.org/10.1177/1533317515576388] [PMID: 25788433]
[97]
Vijayalakshmi SA, Adiga S, Bhat P, Chaturvedi A, Bairy KL, Kamath S. Evaluation of the effect of Ferula asafoetida Linn. gum extract on learning and memory in Wistar rats. Indian J Pharmacol 2012; 44(1): 82-7.
[http://dx.doi.org/10.4103/0253-7613.91873] [PMID: 22345876]
[98]
Bagheri SM, Maghsoudi MJ, Yadegari M. Preventive effect of Ferula asafoetida oleo gum resin on histopathology in cuprizone-induced demyelination mice. Int J Prev Med 2020; 11: 179.
[PMID: 33456735]
[99]
Anwar N, Khan MA, Bukhari M, Ahmed H, Zaidi AA, Arshad H. Anti-epileptic potential of Ziziphus vulgaris and Ferula asafoetida extracts in drug induced seizure models of experimental mice. RADS J Pharm Pharmaceut Sci 2020; 8(1): 37-46.
[http://dx.doi.org/10.37962/jpps.v8i1.344]
[100]
Kumar TB, Reddy DVJ, Rushendran R, Mamatha T, Roja J, Roopavani T. Antidepressant activity of ethanolic extract of oleo gum resins of Ferula asafoetida Linn. J Pre-Clin Clin Res 2017; 11(1): 50-60.
[http://dx.doi.org/10.26444/jpccr/75721]
[101]
Iranshahi M, Alizadeh M. Antihyperglycemic effect of Asafoetida (Ferula assafoetida Oleo-Gum-Resin) in streptozotocin-induced diabetic rats. World Appl Sci J 2012; 17(2): 157-62.
[102]
Niazmand R, Razavizadeh BM. Ferula asafoetida: Chemical composition, thermal behavior, antioxidant and antimicrobial activities of leaf and gum hydroalcoholic extracts. J Food Sci Technol 2021; 58(6): 2148-59.
[http://dx.doi.org/10.1007/s13197-020-04724-8] [PMID: 33967312]
[103]
Bagheri SM, Hedesh ST, Mirjalili A, Dashti-R MH. Evaluation of anti-inflammatory and some possible mechanisms of antinociceptive effect of Ferula assa foetida oleo gum resin. J Evid Based Complementary Altern Med 2016; 21(4): 271-6.
[http://dx.doi.org/10.1177/2156587215605903] [PMID: 26427790]
[104]
Azizian H, Rezvani ME, Esmaeilidehaj M, et al. Anti-obesity, fat lowering and liver steatosis protective effects of Ferula asafoetida gum in type 2 diabetic rats: Possible involvement of leptin. Iran J Diabetes Obesity 2012; 4(3), autumn 2012.
[105]
Gavrilova O, Marcus-Samuels B, Leon LR, Vinson C, Reitman ML. Leptin and diabetes in lipoatrophic mice. Nature 2000; 403(6772): 850-0.
[http://dx.doi.org/10.1038/35002663] [PMID: 10706272]
[106]
Homayouni Moghadam F, Dehghan M, Zarepur E, et al. Oleo gum resin of Ferula assa-foetida L. ameliorates peripheral neuropathy in mice. J Ethnopharmacol 2014; 154(1): 183-9.
[http://dx.doi.org/10.1016/j.jep.2014.03.069] [PMID: 24709312]
[107]
Kamran SKS, Rasul A, Anwar H, et al. Ferula asafoetida Linn. is effective for early functional recovery following mechanically induced insult to the sciatic nerve of a mouse model. Trop J Pharm Res 2020; 19(9): 1903-10.
[http://dx.doi.org/10.4314/tjpr.v19i9.15]
[108]
Gong W, Chen C, Dobes C, Fu CX, Koch MA. Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Mol Phylogenet Evol 2008; 48(3): 1094-105.
[http://dx.doi.org/10.1016/j.ympev.2008.05.003] [PMID: 18554931]
[109]
Ma S, Yin H, Chen L, Liu H, Zhao M, Zhang X. Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats. J Nat Med 2012; 66(1): 25-31.
[http://dx.doi.org/10.1007/s11418-011-0545-7] [PMID: 21611909]
[110]
Lang D, Kiewert C, Mdzinarishvili A, et al. Neuroprotective effects of bilobalide are accompanied by a reduction of ischemia-induced glutamate release in vivo. Brain Res 2011; 1425: 155-63.
[http://dx.doi.org/10.1016/j.brainres.2011.10.005] [PMID: 22032877]
[111]
Liao Z, Cheng L, Li X, Zhang M, Wang S, Huo R. Meta-analysis of Ginkgo biloba preparation for the treatment of Alzheimer’s Disease. Clin Neuropharmacol 2020; 43(4): 93-9.
[http://dx.doi.org/10.1097/WNF.0000000000000394] [PMID: 32658034]
[112]
Zhang L, Wu T, Xiao W, Wang Z, Ding G, Zhao L. Enrichment and purification of total ginkgo flavonoid O-glycosides from Ginkgo biloba extract with macroporous resin and evaluation of anti-inflammation activities in vitro. Molecules 2018; 23(5): 1167.
[http://dx.doi.org/10.3390/molecules23051167] [PMID: 29757247]
[113]
Tulsulkar J, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem Int 2013; 62(2): 189-97.
[http://dx.doi.org/10.1016/j.neuint.2012.11.017] [PMID: 23228346]
[114]
Szasz BK, Lenkey N, Barth AM, et al. Converging effects of Ginkgo biloba extract at the level of transmitter release, NMDA and sodium currents and dendritic spikes. Planta Med 2008; 74(10): 1235-9.
[http://dx.doi.org/10.1055/s-2008-1081292] [PMID: 18622902]
[115]
Park HJ, Lee HG, Kim YS, et al. Ginkgo biloba extract attenuates hyperalgesia in a rat model of vincristine-induced peripheral neuropathy. Anesth Analg 2012; 115(5): 1228-33.
[http://dx.doi.org/10.1213/ANE.0b013e318262e170] [PMID: 23011564]
[116]
da Silva GGP, Zanoni JN, Buttow NC. Neuroprotective action of Ginkgo biloba on the enteric nervous system of diabetic rats. World J Gastroenterol 2011; 17(7): 898-905.
[http://dx.doi.org/10.3748/wjg.v17.i7.898] [PMID: 21412498]
[117]
Kim YS, Park HJ, Kim TK, Moon DE, Lee HJ. The effects of Ginkgo biloba extract EGb 761 on mechanical and cold allodynia in a rat model of neuropathic pain. Anesth Analg 2009; 108(6): 1958-63.
[http://dx.doi.org/10.1213/ane.0b013e31819f1972] [PMID: 19448231]
[118]
Taliyan R, Sharma PL. Protective effect and potential mechanism of Ginkgo biloba extract EGb 761 on STZ-induced neuropathic pain in rats. Phytother Res 2012; 26(12): 1823-9.
[http://dx.doi.org/10.1002/ptr.4648] [PMID: 22422566]
[119]
Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailey CJ, Bignell AH. Improvement in glucose tolerance due to Momordica charantia (karela). Br Med J (Clin Res Ed) 1981; 282(6279): 1823-4.
[http://dx.doi.org/10.1136/bmj.282.6279.1823] [PMID: 6786635]
[120]
Raish M, Ahmad A, Jan BL, et al. Momordica charantia polysaccharides mitigate the progression of STZ induced diabetic nephropathy in rats. Int J Biol Macromol 2016; 91: 394-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.090] [PMID: 27238589]
[121]
Teoh SL, Abd Latiff A, Das S. Histological changes in the kidneys of experimental diabetic rats fed with Momordica charantia (bitter gourd) extract. Rom J Morphol Embryol 2010; 51(1): 91-5.
[PMID: 20191126]
[122]
Malik ZA, Tabassum N, Sharma PL. Attenuation of experimentally induced diabetic neuropathy in association with reduced oxidative-nitrosative stress by chronic administration of Momordica charantia. Adv Biosci Biotechnol 2013; 4(3): 43047.
[http://dx.doi.org/10.4236/abb.2013.43047]
[123]
Srivastava Y, Venkatakrishna-Bhatt H, Verma Y. Effect of Momordica charantia Linn. pomous aqueous extract on cataractogenesis in murrin alloxan diabetics. Pharmacol Res Commun 1988; 20(3): 201-9.
[http://dx.doi.org/10.1016/S0031-6989(88)80041-9] [PMID: 3387455]
[124]
Rathi SS, Grover JK, Vikrant V, Biswas NR. Prevention of experimental diabetic cataract by Indian Ayurvedic plant extracts. Phytother Res 2002; 16(8): 774-7.
[http://dx.doi.org/10.1002/ptr.1064] [PMID: 12458487]
[125]
Shih C-C, Lin C-H, Lin W-L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract 2008; 81(2): 134-43.
[http://dx.doi.org/10.1016/j.diabres.2008.04.023] [PMID: 18550200]
[126]
Shih C-C, Lin CH, Lin WL, Wu JB. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J Ethnopharmacol 2009; 123(1): 82-90.
[http://dx.doi.org/10.1016/j.jep.2009.02.039] [PMID: 19429344]
[127]
Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem 2004; 261(1-2): 63-70.
[http://dx.doi.org/10.1023/B:MCBI.0000028738.95518.90] [PMID: 15362486]
[128]
Chaturvedi P, George S. Momordica charantia maintains normal glucose levels and lipid profiles and prevents oxidative stress in diabetic rats subjected to chronic sucrose load. J Med Food 2010; 13(3): 520-7.
[http://dx.doi.org/10.1089/jmf.2009.0151] [PMID: 20521977]
[129]
Abdou M, Abdalla M, Hegazy A, Marzok Z. Physiological studies on clove basil plant. J Plant Prod 2011; 2(11): 1451-69.
[http://dx.doi.org/10.21608/jpp.2011.85669]
[130]
Shittu S-TT, Oyeyemi WA, Lasisi TJ, Shittu SA, Lawal TT, Olujobi ST. Aqueous leaf extract of Ocimum gratissimum improves hematological parameters in alloxan-induced diabetic rats via its antioxidant properties. Int J Appl Basic Med Res 2016; 6(2): 96-100.
[http://dx.doi.org/10.4103/2229-516X.179016] [PMID: 27127737]
[131]
Ayinla M, et al. Anti-hyperlipidemic effect of aqueous leaf extract of Ocimum gratissimum in alloxan induced diabetic rats. International Journal of Medicine and Medical Sciences 2011; 3(12): 360-3.
[132]
Paula-Freire LIG, Molska GR, Andersen ML, Carlini EL. Ocimum gratissimum essential oil and its isolated compounds (Eugenol and myrcene) reduce neuropathic pain in mice. Planta Med 2016; 82(3): 211-6.
[PMID: 26584457]
[133]
Malapermal V, Botha I, Krishna SBN, Mbatha JN. Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles. Saudi J Biol Sci 2017; 24(6): 1294-305.
[http://dx.doi.org/10.1016/j.sjbs.2015.06.026] [PMID: 28855825]
[134]
Suanarunsawat T, Anantasomboon G, Piewbang C. Anti-diabetic and anti-oxidative activity of fixed oil extracted from Ocimum sanctum L. leaves in diabetic rats. Exp Ther Med 2016; 11(3): 832-40.
[http://dx.doi.org/10.3892/etm.2016.2991] [PMID: 26998000]
[135]
Muthuraman A, Diwan V, Jaggi AS, Singh N, Singh D. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats. J Ethnopharmacol 2008; 120(1): 56-62.
[http://dx.doi.org/10.1016/j.jep.2008.07.049] [PMID: 18762236]
[136]
Kaur G, Jaggi AS, Singh N. Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats. J Brachial Plex Peripher Nerve Inj 2010; 5(1): 3.
[PMID: 20181005]
[137]
Guex CG, Reginato FZ, de Jesus PR, Brondani JC, Lopes GHH, Bauermann LF. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J Ethnopharmacol 2019; 235: 1-7.
[http://dx.doi.org/10.1016/j.jep.2019.02.001] [PMID: 30721736]
[138]
Kaeidi A, Esmaeili-Mahani S, Sheibani V, et al. Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: In vitro and in vivo studies. J Ethnopharmacol 2011; 136(1): 188-96.
[http://dx.doi.org/10.1016/j.jep.2011.04.038] [PMID: 21540099]
[139]
Baliga MS, Baliga BRV, Kandathil SM, Bhat HP, Vayalil PK. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 2011; 44(7): 1812-22.
[http://dx.doi.org/10.1016/j.foodres.2010.07.004]
[140]
Abdelaziz DH, Ali SA, Mostafa MM. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats. Pharm Biol 2015; 53(6): 792-9.
[http://dx.doi.org/10.3109/13880209.2014.942790] [PMID: 25612778]
[141]
Zangiabadi N, Asadi-Shekaari M, Sheibani V, et al. Date fruit extract is a neuroprotective agent in diabetic peripheral neuropathy in streptozotocin-induced diabetic rats: A multimodal analysis. Oxid Med Cell Longev 2011; 2011976948
[http://dx.doi.org/10.1155/2011/976948]
[142]
Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, et al. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci Technol 2015; 45(2): 355-68.
[http://dx.doi.org/10.1016/j.tifs.2015.07.015]
[143]
Al-Jamal A-R, Alqadi T. Effects of rosemary (Rosmarinus officinalis) on lipid profile of diabetic rats. Jordan J Biol Sci 2011; 147(622): 1-5.
[144]
Al Jamal A. Effect of rosemary (Rosmarinus officinalis) on lipid profiles and blood glucose in human diabetic patients (type-2). Afr J Biochem Res 2014; 8(8): 147-50.
[http://dx.doi.org/10.5897/AJBR2014.0765]
[145]
Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, Rashidipour M, Fatemi I, Kaeidi A. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci 2019; 69(1): 57-64.
[http://dx.doi.org/10.1007/s12576-018-0620-x] [PMID: 29754274]
[146]
Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017; 86: 441-9.
[http://dx.doi.org/10.1016/j.biopha.2016.12.049] [PMID: 28012923]
[147]
Mittal J, Sharma MM, Batra A. Tinospora cordifolia: A multipurpose medicinal plant-A. Faslnamah-i Giyahan-i Daruyi 2014; 2(2): 151-9.
[148]
Agrawal SS, Naqvi S, Gupta SK, Srivastava S. Prevention and management of diabetic retinopathy in STZ diabetic rats by Tinospora cordifolia and its molecular mechanisms. Food Chem Toxicol 2012; 50(9): 3126-32.
[http://dx.doi.org/10.1016/j.fct.2012.05.057] [PMID: 22687550]
[149]
Goel B, Pathak N, Nim DK, Singh SK, Dixit RK, Chaurasia R. Clinical evaluation of analgesic activity of guduchi (Tinospora cordifolia) using animal model. J Clin Diagn Res 2014; 8(8): HC01-4.
[http://dx.doi.org/10.7860/JCDR/2014/9207.4671] [PMID: 25302211]
[150]
Patel MB, Mishra SM. Magnoflorine from Tinospora cordifolia stem inhibits α-glucosidase and is antiglycemic in rats. J Funct Foods 2012; 4(1): 79-86.
[http://dx.doi.org/10.1016/j.jff.2011.08.002]
[151]
Khanal P, Patil BM, Mandar BK, Dey YN, Duyu T. Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. Clinical Phytoscience 2019; 5(1): 1-9.
[http://dx.doi.org/10.1186/s40816-019-0131-1]
[152]
Nadig PD, Revankar RR, Dethe SM, Narayanswamy SB, Aliyar MA. Effect of Tinospora cordifolia on experimental diabetic neuropathy. Indian J Pharmacol 2012; 44(5): 580-3.
[http://dx.doi.org/10.4103/0253-7613.100380] [PMID: 23112417]
[153]
Sangeetha MK, Balaji Raghavendran HR, Gayathri V, Vasanthi HR. Tinospora cordifolia attenuates oxidative stress and distorted carbohydrate metabolism in experimentally induced type 2 diabetes in rats. J Nat Med 2011; 65(3-4): 544-50.
[http://dx.doi.org/10.1007/s11418-011-0538-6] [PMID: 21538233]
[154]
Hajar R. History of medicine timeline. Heart Views 2015; 16(1): 43-5.
[http://dx.doi.org/10.4103/1995-705X.153008]
[155]
Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: A multifunctional delivery system. J Control Release 2021; 335: 481-97.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.043] [PMID: 34087250]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy