Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Epigenetic-related Effects of COVID-19 on Human Cells

Author(s): Arezoo Faramarzi, Reza Safaralizadeh*, Narges Dastmalchi and Shahram Teimourian

Volume 22, Issue 7, 2022

Published on: 17 June, 2022

Article ID: e200422203823 Pages: 6

DOI: 10.2174/1871526522666220420093029

Price: $65

conference banner
Abstract

Epigenetics is related to the various pathways that show long‐term impacts on the gene expression patterns without alterations in nucleotide sequences. Over the last decade, epigenetics advanced significantly in the science of biology, oncology, innate immunity as well as pathogens and infectious diseases. In the present paper, we aimed to review the relationships between COVID-19 and epigenetic alterations of the infected cells. Coronavirus is one of the known infectious diseases that causes respiratory infection, such as pneumonia and coughing, while in animals, it causes diarrhea and upper respiratory disorders. This virus could be transmitted human to human or human to an animal through droplets. It translocates via membrane ACE-2 exopeptidase into the host cells. In conclusion, hypomethylation of angiotensin II converting enzyme (ACE II) possibly upregulates its expression, enhancing the possibility of SARS-CoV-2 infection.

Keywords: SAR-CoV, ACE gene, epigenetic genes, methylation, histone modification, COVID-19, human cell.

Graphical Abstract
[1]
Chlamydas S, Papavassiliou AG, Piperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 2021; 16(3): 263-70.
[http://dx.doi.org/10.1080/15592294.2020.1796896] [PMID: 32686577]
[2]
El Baba R, Herbein G. Management of epigenomic networks entailed in coronavirus infections and COVID-19. Clin Epigenetics 2020; 12(1): 118.
[http://dx.doi.org/10.1186/s13148-020-00912-7] [PMID: 32758273]
[3]
Chen Y, Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol Sin 2016; 31(1): 3-11.
[http://dx.doi.org/10.1007/s12250-016-3726-4] [PMID: 26847650]
[4]
Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA. Epigenetic regulation of transcription: A mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 2007; 97(6): 1036-46.
[http://dx.doi.org/10.1017/S0007114507682920] [PMID: 17381976]
[5]
Turner BM. Histone acetylation and an epigenetic code. BioEssays 2000; 22(9): 836-45.
[http://dx.doi.org/10.1002/1521-1878(200009)22:9<836:AID-BIES9>3.0.CO;2-X] [PMID: 10944586]
[6]
Chathappady House NN. Palissery S, Sebastian H. Corona viruses: A review on SARS, MERS and COVID-19. Microbiol Insights 2021; 1411786361211002481
[http://dx.doi.org/10.1177/11786361211002481] [PMID: 33795938]
[7]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[8]
Watt A, Moukambi F, Banadyga L, et al. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol 2014; 88(18): 10511-24.
[http://dx.doi.org/10.1128/JVI.01272-14] [PMID: 24965473]
[9]
Morales-Sánchez A, Fuentes-Pananá EM. Human viruses and cancer. Viruses 2014; 6(10): 4047-79.
[http://dx.doi.org/10.3390/v6104047] [PMID: 25341666]
[10]
Foresta C, Rocca MS, Di Nisio A. Gender susceptibility to COVID-19: A review of the putative role of sex hormones and X chromosome. J Endocrinol Invest 2021; 44(5): 951-6.
[http://dx.doi.org/10.1007/s40618-020-01383-6] [PMID: 32936429]
[11]
Al-Osail AM, Al-Wazzah MJ. The history and epidemiology of Middle East respiratory syndrome corona virus. Multidiscip Respir Med 2017; 12(1): 20.
[http://dx.doi.org/10.1186/s40248-017-0101-8] [PMID: 28794876]
[12]
MacIntyre CR, Ridda I, Seale H, et al. Respiratory viruses transmission from children to adults within a household. Vaccine 2012; 30(19): 3009-14.
[http://dx.doi.org/10.1016/j.vaccine.2011.11.047] [PMID: 22119589]
[13]
Kutter JS, Spronken MI, Fraaij PL, Fouchier RA, Herfst S. Transmission routes of respiratory viruses among humans. Curr Opin Virol 2018; 28: 142-51.
[http://dx.doi.org/10.1016/j.coviro.2018.01.001] [PMID: 29452994]
[14]
van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med 2004; 10(4): 368-73.
[http://dx.doi.org/10.1038/nm1024] [PMID: 15034574]
[15]
Zhou H, Chen X, Hu T, et al. A novel bat coronavirus closely related to sars-cov-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 2020; 30(11): 2196-2203.e3.
[http://dx.doi.org/10.1016/j.cub.2020.05.023] [PMID: 32416074]
[16]
Andrés C, Garcia-Cehic D, Gregori J, et al. Naturally occurring SARS-CoV-2 gene deletions close to the spike S1/S2 cleavage site in the viral quasispecies of COVID19 patients. Emerg Microbes Infect 2020; 9(1): 1900-11.
[http://dx.doi.org/10.1080/22221751.2020.1806735] [PMID: 32752979]
[17]
Csángó PA, Jagars G, Bekkelund SD, Hagen N. Gardnerella vaginalis. A common cause of leukorrhea and colpitis? Tidsskr Nor Laegeforen 1982; 102(4): 240-2.
[PMID: 7123520]
[18]
Rivière G, Lienhard D, Andrieu T, Vieau D, Frey BM, Frey FJ. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics 2011; 6(4): 478-89.
[http://dx.doi.org/10.4161/epi.6.4.14961] [PMID: 21364323]
[19]
Beacon TH, Delcuve GP, Davie JR. Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus. Genome 2021; 64(4): 386-99.
[http://dx.doi.org/10.1139/gen-2020-0124] [PMID: 33086021]
[20]
Li Y, Li H, Zhou L. EZH2-mediated H3K27me3 inhibits ACE2 expression. Biochem Biophys Res Commun 2020; 526(4): 947-52.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.010] [PMID: 32291076]
[21]
Cardenas A, Rifas-Shiman SL, Sordillo JE, et al. DNA methylation architecture of the ACE2 gene in nasal cells. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.08.25.20182105]
[22]
Chai P, Yu J, Ge S, Jia R, Fan X. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: A pan-cancer analysis. J Hematol Oncol 2020; 13(1): 43.
[http://dx.doi.org/10.1186/s13045-020-00883-5] [PMID: 32366279]
[23]
Sawalha AH, Zhao M, Coit P, Lu Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin Immunol 2020; 215108410
[http://dx.doi.org/10.1016/j.clim.2020.108410] [PMID: 32276140]
[24]
Raleigh SM. Epigenetic regulation of the ACE gene might be more relevant to endurance physiology than the I/D polymorphism. J Appl Physiol 2012; 112: 1082-3.
[25]
Tikoo K, Patel G, Kumar S, et al. Tissue specific up regulation of ACE2 in rabbit model of atherosclerosis by atorvastatin: Role of epigenet-ic histone modifications. Biochem Pharmacol 2015; 93(3): 343-51.
[http://dx.doi.org/10.1016/j.bcp.2014.11.013] [PMID: 25482567]
[26]
Onabajo OO, Banday AR, Stanifer ML, et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat Genet 2020; 52(12): 1283-93.
[http://dx.doi.org/10.1038/s41588-020-00731-9] [PMID: 33077916]
[27]
Konwar C, Asiimwe R, Inkster AM, et al. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: Corollaries in DNA methylation and gene expression. Epigenetics Chromatin 2021; 14(1): 54.
[http://dx.doi.org/10.1186/s13072-021-00428-1] [PMID: 34895312]
[28]
Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003; 12(6): 1577-89.
[http://dx.doi.org/10.1016/S1097-2765(03)00477-5] [PMID: 14690609]
[29]
Albert M, Helin K. Histone methyltransferases in cancer. Semin Cell Dev Biol 2010; 21(2): 209-20.
[http://dx.doi.org/10.1016/j.semcdb.2009.10.007] [PMID: 19892027]
[30]
Hake SB, Xiao A, Allis CD. Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 2004; 90(4): 761-9.
[http://dx.doi.org/10.1038/sj.bjc.6601575] [PMID: 14970850]
[31]
Zhang Y, Reinberg D. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core his-tone tails. Genes Dev 2001; 15(18): 2343-60.
[http://dx.doi.org/10.1101/gad.927301] [PMID: 11562345]
[32]
Rabello DA, de Moura CA, de Andrade RV, Motoyama AB, Silva FP. Altered expression of MLL methyltransferase family genes in breast cancer. Int J Oncol 2013; 43(2): 653-60.
[http://dx.doi.org/10.3892/ijo.2013.1981] [PMID: 23754336]
[33]
Danese E, Montagnana M. Epigenetics of colorectal cancer: Emerging circulating diagnostic and prognostic biomarkers. Ann Transl Med 2017; 5(13): 279.
[http://dx.doi.org/10.21037/atm.2017.04.45] [PMID: 28758105]
[34]
Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone meth-ylation. J Biol Chem 2003; 278(6): 4035-40.
[http://dx.doi.org/10.1074/jbc.M210256200] [PMID: 12427740]
[35]
Guo C, Chang CC, Wortham M, et al. Global identification of MLL2-targeted loci reveals MLL2's role in diverse signaling pathways. Proc Natl Acad Sci USA 2012; 109(43): 17603-8.
[http://dx.doi.org/10.1073/pnas.1208807109] [PMID: 23045699]
[36]
Denissov S, Hofemeister H, Marks H, et al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 2014; 141(3): 526-37.
[http://dx.doi.org/10.1242/dev.102681] [PMID: 24423662]
[37]
Pazin MJ, Kadonaga JT. What’s up and down with histone deacetylation and transcription? Cell 1997; 89(3): 325-8.
[http://dx.doi.org/10.1016/S0092-8674(00)80211-1] [PMID: 9150131]
[38]
Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 1998; 12(5): 599-606.
[http://dx.doi.org/10.1101/gad.12.5.599] [PMID: 9499396]
[39]
Wade PA, Pruss D, Wolffe AP. Histone acetylation: Chromatin in action. Trends Biochem Sci 1997; 22(4): 128-32.
[http://dx.doi.org/10.1016/S0968-0004(97)01016-5] [PMID: 9149532]
[40]
Chen WY, Townes TM. Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin conden-sation. Proc Natl Acad Sci USA 2000; 97(1): 377-82.
[http://dx.doi.org/10.1073/pnas.97.1.377] [PMID: 10618426]
[41]
Seto E, Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014; 6(4)a018713
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[42]
Ng HH, Bird A. Histone deacetylases: Silencers for hire. Trends Biochem Sci 2000; 25(3): 121-6.
[http://dx.doi.org/10.1016/S0968-0004(00)01551-6] [PMID: 10694882]
[43]
a) Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases EMBO Rep 2003; 4(10): 944-7.
[http://dx.doi.org/10.1038/sj.embor.embor941] [PMID: 14528264];
b) Schäfer A, Muecksch F, Lorenzi JCC, et al. Schäfer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S, Schmidt F, Maison RM, Gazumyan A, Martinez DR, Baric RS, Robbiani DF, Hatziioannou T, Ravetch JV, Bieniasz PD, Bowen RA, Nussenzweig MC, Sheahan TP. Antibody potency, effector function, and combinations in protection and therapy for SARSCoV- 2 infection in vivo. J Exp Med. 2021; 218(3): e20201993.
[http://dx.doi.org/10.1084/jem.20201993] [PMID: 33211088];
c) Menachery VD, Schäfer A, Burnum-Johnson KE, et al. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by alter-ing the epigenetic landscape. Proc Natl Acad Sci USA 2018; 115(5): E1012-21.
[http://dx.doi.org/10.1073/pnas.1706928115]
[44]
Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics 2020; 12(1): 156.
[http://dx.doi.org/10.1186/s13148-020-00946-x] [PMID: 33087172]
[45]
Balnis J, Madrid A, Hogan KJ, et al. Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics 2021; 13(1): 118.
[http://dx.doi.org/10.1186/s13148-021-01102-9] [PMID: 34034806]
[46]
Huckriede J, de Vries F, Hultström M, et al. Histone H3 Cleavage in Severe COVID-19 ICU Patients. Front Cell Infect Microbiol 2021; 11694186
[http://dx.doi.org/10.3389/fcimb.2021.694186] [PMID: 34568088]
[47]
Han F, Liu Y, Mo M, et al. Current treatment strategies for COVID-19 (Review). Mol Med Rep 2021; 24(6): 24.
[http://dx.doi.org/10.3892/mmr.2021.12498] [PMID: 34664677]
[48]
Abd-Elsalam S, Soliman S, Esmail ES, et al. Do zinc supplements enhance the clinical efficacy of hydroxychloroquine?: A randomized, multicenter trial. Biol Trace Elem Res 2021; 199(10): 3642-6.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[49]
Mohamed AA, Mohamed N, Mohamoud S, et al. SARS-CoV-2: The path of prevention and control. Infect Disord Drug Targets 2021; 21(3): 358-62.
[http://dx.doi.org/10.2174/1871526520666200520112848] [PMID: 32433010]
[50]
Abd-Elsalam S, Ahmed OA, Mansour NO, et al. Remdesivir efficacy in COVID-19 treatment: A randomized controlled Trial. Am J Trop Med Hyg 2021.
[51]
El-Bendary M, Abd-Elsalam S, Elbaz T, et al. Efficacy of combined Sofosbuvir and Daclatasvir in the treatment of COVID-19 patients with pneumonia: A multicenter Egyptian study. Expert Rev Anti Infect Ther 2022; 20(2): 291-5.
[http://dx.doi.org/10.1080/14787210.2021.1950532] [PMID: 34225541]
[52]
Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized con-trolled study. J Med Virol 2021; 93(10): 5833-8.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[53]
Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: A multi-center randomized study. Arch Virol 2021; 166(3): 949-54.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy