Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Dysregulated Epigenetics of Chordoma: Prognostic Markers and Therapeutic Targets

Author(s): Kevin Tu, Sang Lee, Sanjit Roy, Amit Sawant and Hem Shukla*

Volume 22, Issue 8, 2022

Published on: 09 June, 2022

Page: [678 - 690] Pages: 13

DOI: 10.2174/1568009622666220419122716

Price: $65

conference banner
Abstract

Chordoma is a rare, slow-growing sarcoma that is locally aggressive and typically resistant to conventional chemo- and radiotherapies. Despite its low incidence, chordoma remains a clinical challenge because therapeutic options for chordoma are limited, and little is known about the molecular mechanisms involved in resistance to therapies. Furthermore, there are currently no established predictive or prognostic biomarkers to follow disease progression or treatment. Whole-genome sequencing of chordoma tissues has demonstrated a low-frequency mutation rate compared to other cancers. This has generated interest in the role of epigenetic events in chordoma pathogenesis. In this review, we discuss the current understanding of the epigenetic drivers of chordoma and their potential applications in prognosis and the development of new therapies.

Keywords: Chordoma, epigenetics, miRNA, lncRNA, histone modifications, DNA methylation, biomarkers, prognosis.

Graphical Abstract
[1]
Smoll, N.R.; Gautschi, O.P.; Radovanovic, I.; Schaller, K.; Weber, D.C. Incidence and relative survival of chordomas: The standardized mortality ratio and the impact of chordomas on a population. Cancer, 2013, 119(11), 2029-2037.
[http://dx.doi.org/10.1002/cncr.28032] [PMID: 23504991]
[2]
George, B.; Bresson, D.; Herman, P.; Froelich, S. Chordomas: A review. Neurosurg. Clin. N. Am., 2015, 26(3), 437-452.
[http://dx.doi.org/10.1016/j.nec.2015.03.012] [PMID: 26141362]
[3]
Angelini, A.; Pala, E.; Calabrò, T.; Maraldi, M.; Ruggieri, P. Prognostic factors in surgical resection of sacral chordoma. J. Surg. Oncol., 2015, 112(4), 344-351.
[http://dx.doi.org/10.1002/jso.23987] [PMID: 26238085]
[4]
Ji, T.; Guo, W.; Yang, R.; Tang, X.; Wang, Y.; Huang, L. What are the conditional survival and functional outcomes after surgical treatment of 115 patients with sacral chordoma? Clin. Orthop. Relat. Res., 2017, 475(3), 620-630.
[http://dx.doi.org/10.1007/s11999-016-4773-8] [PMID: 26975382]
[5]
Kayani, B.; Sewell, M.D.; Tan, K-A.; Hanna, S.A.; Williams, R.; Pollock, R.; Skinner, J.; Briggs, T.W. Prognostic factors in the operative management of sacral chordomas. World Neurosurg., 2015, 84(5), 1354-1361.
[http://dx.doi.org/10.1016/j.wneu.2015.06.030] [PMID: 26115803]
[6]
Radaelli, S.; Stacchiotti, S.; Ruggieri, P.; Donati, D.; Casali, P.G.; Palmerini, E.; Collini, P.; Gambarotti, M.; Porcu, L.; Boriani, S.; Gronchi, A.; Picci, P. Sacral chordoma: Long-term outcome of a large series of patients surgically treated at two reference centers. Spine, 2016, 41(12), 1049-1057.
[http://dx.doi.org/10.1097/BRS.0000000000001604] [PMID: 27054448]
[7]
Xie, C.; Whalley, N.; Adasonla, K.; Grimer, R.; Jeys, L. Can local recurrence of a sacral chordoma be treated by further surgery? Bone Joint J., 2015, 97-B(5), 711-715.
[http://dx.doi.org/10.1302/0301-620X.97B5.35131] [PMID: 25922468]
[8]
Fernandez-Miranda, J.C.; Gardner, P.A.; Snyderman, C.H.; Devaney, K.O.; Mendenhall, W.M.; Suárez, C. Clival chordomas: A pathological, surgical, and radiotherapeutic review. Head Neck, 2014, 36(6), 892-906.
[http://dx.doi.org/10.1002/hed.23415]
[9]
Young, V.A.; Curtis, K.M.; Temple, H.T.; Eismont, F.J.; DeLaney, T.F.; Hornicek, F.J. Characteristics and patterns of metastatic disease from chordoma. Sarcoma, 2015, 2015, 517657.
[http://dx.doi.org/10.1155/2015/517657] [PMID: 26843835]
[10]
Stacchiotti, S.; Sommer, J. Building a global consensus approach to chordoma: A position paper from the medical and patient community. Lancet Oncol., 2015, 16(2), e71-e83.
[http://dx.doi.org/10.1016/S1470-2045(14)71190-8] [PMID: 25638683]
[11]
Jahangiri, A.; Chin, A.T.; Wagner, J.R.; Kunwar, S.; Ames, C.; Chou, D.; Barani, I.; Parsa, A.T.; McDermott, M.W.; Benet, A.; El-Sayed, I.H.; Aghi, M.K. Factors predicting recurrence after resection of clival chordoma using variable surgical approaches and radiation modalities. Neurosurgery, 2015, 76(2), 179-185.
[http://dx.doi.org/10.1227/NEU.0000000000000611] [PMID: 25594191]
[12]
Wang, L.; Zehir, A.; Nafa, K.; Zhou, N.; Berger, M.F.; Casanova, J. Genomic aberrations frequently alter chromatin regulatory genes in chordoma. Genes Chromosomes Cancer, 2016, 55(7), 591-600.
[http://dx.doi.org/10.1002/gcc.22362]
[13]
Tarpey, P.S.; Behjati, S.; Young, M.D.; Martincorena, I.; Alexandrov, L.B.; Farndon, S.J.; Guzzo, C.; Hardy, C.; Latimer, C.; Butler, A.P.; Teague, J.W.; Shlien, A.; Futreal, P.A.; Shah, S.; Bashashati, A.; Jamshidi, F.; Nielsen, T.O.; Huntsman, D.; Baumhoer, D.; Brandner, S.; Wunder, J.; Dickson, B.; Cogswell, P.; Sommer, J.; Phillips, J.J.; Amary, M.F.; Tirabosco, R.; Pillay, N.; Yip, S.; Stratton, M.R.; Flanagan, A.M.; Campbell, P.J. The driver landscape of sporadic chordoma. Nat. Commun., 2017, 8(1), 890.
[http://dx.doi.org/10.1038/s41467-017-01026-0] [PMID: 29026114]
[14]
Maxwell, K.N.; Wenz, B.M.; Kulkarni, A.; Wubbenhorst, B.; D’Andrea, K.; Weathers, B.; Goodman, N.; Vijai, J.; Lilyquist, J.; Hart, S.N.; Slavin, T.P.; Schrader, K.A.; Ravichandran, V.; Thomas, T.; Hu, C.; Robson, M.E.; Peterlongo, P.; Bonanni, B.; Ford, J.M.; Garber, J.E.; Neuhausen, S.L.; Shah, P.D.; Bradbury, A.R.; DeMichele, A.M.; Offit, K.; Weitzel, J.N.; Couch, F.J.; Domchek, S.M.; Nathanson, K.L. Mutation rates in cancer susceptibility genes in patients with breast cancer with multiple primary cancers. JCO Precis. Oncol., 2020, 4(4), 916-925.
[http://dx.doi.org/10.1200/PO.19.00301] [PMID: 32954205]
[15]
Rickel, K.; Fang, F.; Tao, J. Molecular genetics of osteosarcoma. Bone, 2017, 102, 69-79.
[http://dx.doi.org/10.1016/j.bone.2016.10.017] [PMID: 27760307]
[16]
Linehan, W.M. Genetic basis of kidney cancer: Role of genomics for the development of disease-based therapeutics. Genome Res., 2012, 22(11), 2089-2100.
[http://dx.doi.org/10.1101/gr.131110.111] [PMID: 23038766]
[17]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[18]
Broughton, J.P.; Lovci, M.T.; Huang, J.L.; Yeo, G.W.; Pasquinelli, A.E. Pairing beyond the seed supports microRNA targeting specificity. Mol. Cell, 2016, 64(2), 320-333.
[http://dx.doi.org/10.1016/j.molcel.2016.09.004] [PMID: 27720646]
[19]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[20]
Peng, Y.; Croce, C.M. The role of microRNAs in human cancer. Signal Transduct. Target. Ther., 2016, 1(1), 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[21]
Long, C.; Jiang, L.; Wei, F.; Ma, C.; Zhou, H.; Yang, S. Integrated miRNA-mRNA analysis revealing the potential roles of miRNAs in chordomas. PLoS One, 2013, 8(6), e66676.
[http://dx.doi.org/10.1371/journal.pone.0066676]
[22]
Chen, K.; Chen, H.; Zhang, K.; Sun, S.; Mo, J.; Lu, J. MicroRNA profiling and bioinformatics analyses reveal the potential roles of microRNAs in chordoma. Oncol. Lett., 2017.
[http://dx.doi.org/10.3892/ol.2017.6839]
[23]
Cottone, L.; Eden, N.; Usher, I.; Lombard, P.; Ye, H.; Ligammari, L.; Lindsay, D.; Brandner, S.; Pižem, J.; Pillay, N.; Tirabosco, R.; Amary, F.; Flanagan, A.M. Frequent alterations in p16/CDKN2A identified by immunohistochemistry and FISH in chordoma. J. Pathol. Clin. Res., 2020, 6(2), 113-123.
[http://dx.doi.org/10.1002/cjp2.156] [PMID: 31916407]
[24]
Duan, Z.; Shen, J.; Yang, X.; Yang, P.; Osaka, E.; Choy, E.; Cote, G.; Harmon, D.; Zhang, Y.; Nielsen, G.P.; Spentzos, D.; Mankin, H.; Hornicek, F. Prognostic significance of miRNA-1 (miR-1) expression in patients with chordoma. J. Orthop. Res., 2014, 32(5), 695-701.
[http://dx.doi.org/10.1002/jor.22589] [PMID: 24501096]
[25]
Duan, Z.; Choy, E.; Nielsen, G.P.; Rosenberg, A.; Iafrate, J.; Yang, C.; Schwab, J.; Mankin, H.; Xavier, R.; Hornicek, F.J. Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression. J. Orthop. Res., 2010, 28(6), 746-752.
[http://dx.doi.org/10.1002/jor.21055] [PMID: 20041488]
[26]
Osaka, E.; Yang, X.; Shen, J.K.; Yang, P.; Feng, Y.; Mankin, H.J.; Hornicek, F.J.; Duan, Z. MicroRNA-1 (miR-1) inhibits chordoma cell migration and invasion by targeting slug. J. Orthop. Res., 2014, 32(8), 1075-1082.
[http://dx.doi.org/10.1002/jor.22632] [PMID: 24760686]
[27]
Bayrak, O.F.; Gulluoglu, S.; Aydemir, E.; Ture, U.; Acar, H.; Atalay, B.; Demir, Z.; Sevli, S.; Creighton, C.J.; Ittmann, M.; Sahin, F.; Ozen, M. MicroRNA expression profiling reveals the potential function of microRNA-31 in chordomas. J. Neurooncol., 2013, 115(2), 143-151.
[http://dx.doi.org/10.1007/s11060-013-1211-6] [PMID: 23912551]
[28]
Wei, W.; Zhang, Q.; Wang, Z.; Yan, B.; Feng, Y.; Li, P. miR-219-5p inhibits proliferation and clonogenicity in chordoma cells and is associated with tumor recurrence. Oncol. Lett., 2016, 12(6), 4568-4576.
[http://dx.doi.org/10.3892/ol.2016.5222] [PMID: 28105164]
[29]
Zhang, Y.; Schiff, D.; Park, D.; Abounader, R. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One, 2014, 9(3), e91546.
[30]
Zou, M-X.; Guo, K-M.; Lv, G-H.; Huang, W.; Li, J.; Wang, X-B.; Jiang, Y.; She, X.L. Clinicopathologic implications of CD8+/Foxp3+ ratio and miR-574-3p/PD-L1 axis in spinal chordoma patients. Cancer Immunol. Immunother., 2018, 67(2), 209-224.
[http://dx.doi.org/10.1007/s00262-017-2080-1] [PMID: 29051990]
[31]
Zhou, J.; Jiang, Y.; Zhang, H.; Chen, L.; Luo, P.; Li, L.; Zhao, J.; Lv, F.; Zou, D.; Zhang, Y.; Jing, Z. Clinicopathological implica-tions of TIM3+ tumor-infiltrating lymphocytes and the miR-455-5p/Galectin-9 axis in skull base chordoma patients. Cancer Immunol. Immunother., 2019, 68(7), 1157-1169.
[http://dx.doi.org/10.1007/s00262-019-02349-1] [PMID: 31197461]
[32]
Fang, X.; Yan, R. miR-152 inhibits the proliferation and invasion of chordoma cells by targeting HOXC8. J. Int. Med. Res., 2019, 47(10), 5185-5193.
[http://dx.doi.org/10.1177/0300060519870915] [PMID: 31638463]
[33]
Zhang, H.; Yang, K.; Ren, T.; Huang, Y.; Liang, X.; Yu, Y.; Wang, W.; Niu, J.; Lou, J.; Tang, X.; Guo, W. MiR-100-5p inhibits malignant behavior of chordoma cells by targeting IGF1R. Cancer Manag. Res., 2020, 12, 4129-4137.
[http://dx.doi.org/10.2147/CMAR.S252185] [PMID: 32606920]
[34]
Mobley, B.C.; McKenney, J.K.; Bangs, C.D.; Callahan, K.; Yeom, K.W.; Schneppenheim, R.; Hayden, M.G.; Cherry, A.M.; Gokden, M.; Edwards, M.S.; Fisher, P.G.; Vogel, H. Loss of SMARCB1/INI1 expression in poorly differentiated chordomas. Acta Neuropathol., 2010, 120(6), 745-753.
[http://dx.doi.org/10.1007/s00401-010-0767-x] [PMID: 21057957]
[35]
Yao, J.; Wu, X. Upregulation of miR-149-3p suppresses spinal chordoma malignancy by targeting Smad3. OncoTargets Ther., 2019, 12, 9987-9997.
[http://dx.doi.org/10.2147/OTT.S222380] [PMID: 31819495]
[36]
Zhang, H.; Yang, K.; Ren, T.; Huang, Y.; Tang, X.; Guo, W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis., 2018, 9(6), 680.
[http://dx.doi.org/10.1038/s41419-018-0738-z] [PMID: 29880900]
[37]
Zou, M-X.; Huang, W.; Wang, X-B.; Lv, G-H.; Li, J.; Deng, Y-W. Identification of miR-140-3p as a marker associated with poor prognosis in spinal chordoma. Int. J. Clin. Exp. Pathol., 2014, 7(8), 4877-4885.
[PMID: 25197358]
[38]
Gulluoglu, S.; Tuysuz, E.C.; Kuskucu, A.; Ture, U.; Atalay, B.; Sahin, F.; Bayrak, O.F. The potential function of microRNA in chordomas. Gene, 2016, 585(1), 76-83.
[http://dx.doi.org/10.1016/j.gene.2016.03.032] [PMID: 27016303]
[39]
Zou, M.X.; Huang, W.; Wang, X.B.; Li, J.; Lv, G.H.; Wang, B.; Deng, Y.W. Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients. Eur. Spine J., 2015, 24(8), 1738-1746.
[http://dx.doi.org/10.1007/s00586-015-3927-9] [PMID: 25850393]
[40]
Wang, Y.; Chen, K.; Chen, H.; Zhang, K.; Lu, J.; Mao, H.; Yang, H. Low expression of miRNA-1290 associated with local invasion and recurrence in sacral chordoma. Int. J. Clin. Exp. Pathol., 2017, 10(11), 10934-10940.
[PMID: 31966437]
[41]
Osaka, E.; Kelly, A.D.; Spentzos, D.; Choy, E.; Yang, X.; Shen, J.K.; Yang, P.; Mankin, H.J.; Hornicek, F.J.; Duan, Z. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget, 2015, 6(11), 9125-9139.
[http://dx.doi.org/10.18632/oncotarget.3273] [PMID: 25823817]
[42]
Kuang, L.; Lv, G.; Wang, B.; Li, L.; Dai, Y.; Li, Y. Overexpression of adenosine deaminase acting on RNA 1 in chordoma tissues is associated with chordoma pathogenesis by reducing miR 125a and miR 10a expression. Mol. Med. Rep., 2015, 12(1), 93-98.
[http://dx.doi.org/10.3892/mmr.2015.3341] [PMID: 25673044]
[43]
Akhavan-Sigari, R.; Abili, M.; Gaab, M.R.; Rohde, V.; Zafar, N.; Emami, P.; Ostertag, H. Immunohistochemical expression of receptor tyrosine kinase PDGFR-α c-Met, and EGFR in skull base chordoma. Neurosurg. Rev., 2015, 38(1), 89-98.
[http://dx.doi.org/10.1007/s10143-014-0579-x] [PMID: 25323095]
[44]
Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 45.
[http://dx.doi.org/10.1186/s12943-018-0796-y] [PMID: 29455668]
[45]
Fernando, R.I.; Litzinger, M.; Trono, P.; Hamilton, D.H.; Schlom, J.; Palena, C. The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. J. Clin. Invest., 2010, 120(2), 533-544.
[http://dx.doi.org/10.1172/JCI38379] [PMID: 20071775]
[46]
Li, X.; Ji, Z.; Ma, Y.; Qiu, X.; Fan, Q.; Ma, B. Expression of hypoxia-inducible factor-1α vascular endothelial growth factor and matrix metalloproteinase-2 in sacral chordomas. Oncol. Lett., 2012, 3(6), 1268-1274.
[http://dx.doi.org/10.3892/ol.2012.645] [PMID: 22783431]
[47]
Palanichamy, J.K.; Rao, D.S. miRNA dysregulation in cancer: Towards a mechanistic understanding. Front. Genet., 2014, 5, 54.
[http://dx.doi.org/10.3389/fgene.2014.00054] [PMID: 24672539]
[48]
Yoon, J-H.; Abdelmohsen, K.; Gorospe, M. Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol., 2014, 34, 9-14.
[http://dx.doi.org/10.1016/j.semcdb.2014.05.015] [PMID: 24965208]
[49]
Gong, F.; Wang, X.; Sun, Q.; Su, X.; Hu, X.; Liu, B. Long non-coding RNA LINC00525 interacts with miR-31-5p and miR-125a-5p to act as an oncogenic molecule in spinal chordoma. Biochem. Biophys. Res. Commun., 2021, 536, 80-87.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.042] [PMID: 33370717]
[50]
Li, L.; Lv, G.; Wang, B.; Ma, H. Long noncoding RNA LINC00525 promotes the aggressive phenotype of chordoma through acting as a microRNA-505-3p sponge and consequently raising HMGB1 expression. OncoTargets Ther., 2020, 13, 9015-9027.
[http://dx.doi.org/10.2147/OTT.S268678] [PMID: 32982292]
[51]
Li, L.; Lv, G.; Wang, B.; Ma, H. Long non-coding RNA KCNQ1OT1 promotes multidrug resistance in chordoma by functioning as a molecular sponge of miR-27b-3p and subsequently increasing ATF2 expression. Cancer Manag. Res., 2020, 12, 7847-7853.
[http://dx.doi.org/10.2147/CMAR.S250611] [PMID: 32922083]
[52]
Hai, B.; Pan, X.; Du, C.; Mao, T.; Jia, F.; Liu, Y.; Ma, Y.; Liu, X.; Zhu, B. LncRNA XIST promotes growth of human chordoma cells by regulating miR-124-3p/iASPP pathway. OncoTargets Ther., 2020, 13, 4755-4765.
[http://dx.doi.org/10.2147/OTT.S252195] [PMID: 32547104]
[53]
Wang, C-B.; Wang, Y.; Wang, J-J.; Guo, X-L. LINC00662 triggers malignant progression of chordoma by the activation of RNF144B via targeting miR-16-5p. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1007-1022.
[PMID: 32096180]
[54]
Ma, X.; Qi, S.; Duan, Z.; Liao, H.; Yang, B.; Wang, W.; Tan, J.; Li, Q.; Xia, X. Long non-coding RNA LOC554202 modulates chordoma cell proliferation and invasion by recruiting EZH2 and regulating miR-31 expression. Cell Prolif., 2017, 50(6), e12388.
[http://dx.doi.org/10.1111/cpr.12388] [PMID: 28963737]
[55]
Zhang, K.; Liu, Z.; Tang, Y.; Shao, X.; Hua, X.; Liu, H.; Yang, H.; Chen, K. LncRNA NONHSAT114552 sponges miR-320d to promote proliferation and invasion of chordoma through upregulating NRP1. Front. Pharmacol., 2021, 12, 773918.
[http://dx.doi.org/10.3389/fphar.2021.773918] [PMID: 34721048]
[56]
Zhang, K.; Liu, Z.; Wang, Z.; Zhou, Z.; Shao, X.; Hua, X.; Mao, H.; Yang, H.; Ren, K.; Chen, K. Long non-coding RNA MDFIC-7 promotes chordoma progression through modulating the miR-525-5p/ARF6 axis. Front. Oncol., 2021, 11, 743718.
[http://dx.doi.org/10.3389/fonc.2021.743718] [PMID: 34621682]
[57]
Aftab, A.; Shahzad, S.; Hussain, H.M.J.; Khan, R.; Irum, S.; Tabassum, S. CDKN2A/P16INK4A variants association with breast cancer and their in-silico analysis. Breast Cancer, 2019, 26(1), 11-28.
[http://dx.doi.org/10.1007/s12282-018-0894-0] [PMID: 30039340]
[58]
Wen, H.; Fu, Y.; Zhu, Y.; Tao, S.; Shang, X.; Li, Z.; You, T.; Zhang, W. Long non-coding RNA KRT8P41/miR-193a-3p/FUBP1 axis modulates the proliferation and invasion of chordoma cells. J. Bone Oncol., 2021, 31, 100392.
[http://dx.doi.org/10.1016/j.jbo.2021.100392] [PMID: 34712553]
[59]
Tian, L.; Zhang, J.; Ren, X.; Liu, X.; Gao, W.; Zhang, C.; Sun, Y.; Liu, M. Overexpression of miR-26b decreases the cisplatin-resistance in laryngeal cancer by targeting ATF2. Oncotarget, 2017, 8(45), 79023-79033.
[http://dx.doi.org/10.18632/oncotarget.20784] [PMID: 29108284]
[60]
Bai, J.; Zhai, Y.; Wang, S.; Li, M.; Zhang, S.; Li, C.; Gui, S.; Li, Q.; Zhang, Y. LncRNA and mRNA expression profiles reveal the potential roles of lncRNA contributing to regulating dural penetration in clival chordoma. Aging (Albany NY), 2020, 12(11), 10809-10826.
[http://dx.doi.org/10.18632/aging.103294] [PMID: 32533822]
[61]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[62]
Zhao, Z.; Shilatifard, A. Epigenetic modifications of histones in cancer. Genome Biol., 2019, 20(1), 245.
[http://dx.doi.org/10.1186/s13059-019-1870-5] [PMID: 31747960]
[63]
Rickels, R.; Hu, D.; Collings, C.K.; Woodfin, A.R.; Piunti, A.; Mohan, M.; Herz, H.M.; Kvon, E.; Shilatifard, A. An evolutionary conserved epigenetic mark of polycomb response elements implemented by Trx/MLL/COMPASS. Mol. Cell, 2016, 63(2), 318-328.
[http://dx.doi.org/10.1016/j.molcel.2016.06.018] [PMID: 27447986]
[64]
Wang, L.; Zhao, Z.; Ozark, P.A.; Fantini, D.; Marshall, S.A.; Rendleman, E.J.; Cozzolino, K.A.; Louis, N.; He, X.; Morgan, M.A.; Takahashi, Y.H.; Collings, C.K.; Smith, E.R.; Ntziachristos, P.; Savas, J.N.; Zou, L.; Hashizume, R.; Meeks, J.J.; Shilatifard, A. Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nat. Med., 2018, 24(6), 758-769.
[http://dx.doi.org/10.1038/s41591-018-0034-6] [PMID: 29785026]
[65]
Piunti, A.; Shilatifard, A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Mol. Cell, 2016, 63(2), 318-328.
[http://dx.doi.org/10.1126/science.aad9780]
[66]
Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[67]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[68]
Scheipl, S.; Lohberger, B.; Rinner, B.; Froehlich, E.V.; Beham, A.; Quehenberger, F.; Lazáry, A.; Pal Varga, P.; Haybaeck, J.; Leithner, A.; Liegl, B. Histone deacetylase inhibitors as potential therapeutic approaches for chordoma: An immunohistochemical and functional analysis. J. Orthop. Res., 2013, 31(12), 1999-2005.
[http://dx.doi.org/10.1002/jor.22447] [PMID: 23893747]
[69]
Beisaw, A.; Tsaytler, P.; Koch, F.; Schmitz, S.U.; Melissari, M.T.; Senft, A.D.; Wittler, L.; Pennimpede, T.; Macura, K.; Herrmann, B.G.; Grote, P. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep., 2018, 19(1), 118-134.
[http://dx.doi.org/10.15252/embr.201744201] [PMID: 29141987]
[70]
Lyu, J.; Jho, E.H.; Lu, W. Smek promotes histone deacetylation to suppress transcription of Wnt target gene brachyury in pluripotent embryonic stem cells. Cell Res., 2011, 21(6), 911-921.
[http://dx.doi.org/10.1038/cr.2011.47] [PMID: 21423269]
[71]
Cottone, L.; Cribbs, A.P.; Khandelwal, G.; Wells, G.; Ligammari, L.; Philpott, M.; Tumber, A.; Lombard, P.; Hookway, E.S.; Szommer, T.; Johansson, C.; Brennan, P.E.; Pillay, N.; Jenner, R.G.; Oppermann, U.; Flanagan, A.M. Inhibition of histone H3K27 demethylases inactivates brachyury (TBXT) and promotes chordoma cell death. Cancer Res., 2020, 80(20), 4540-4551.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1387] [PMID: 32855205]
[72]
Eissenberg, J.C.; Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol., 2010, 339(2), 240-249.
[http://dx.doi.org/10.1016/j.ydbio.2009.08.017] [PMID: 19703438]
[73]
Martinez-Garcia, E.; Licht, J.D. Deregulation of H3K27 methylation in cancer. Nat. Genet., 2010, 42(2), 100-101.
[http://dx.doi.org/10.1038/ng0210-100] [PMID: 20104248]
[74]
Zhu, G.G.; Ramirez, D.; Chen, W.; Lu, C.; Wang, L.; Frosina, D.; Jungbluth, A.; Ntiamoah, P.; Nafa, K.; Boland, P.J.; Hameed, M.R. Chromosome 3p loss of heterozygosity and reduced expression of H3K36me3 correlate with longer relapse-free survival in sacral conventional chordoma. Hum. Pathol., 2020, 104, 73-83.
[http://dx.doi.org/10.1016/j.humpath.2020.07.002] [PMID: 32795465]
[75]
Kulis, M.; Esteller, M. DNA methylation and cancer. Adv. Genet., 2010, 70, 27-56.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2]
[76]
Sheaffer, K.L.; Elliott, E.N.; Kaestner, K.H. DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev. Res. (Phila.), 2016, 9(7), 534-546.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0349] [PMID: 26883721]
[77]
Ransohoff, D.F. CANCER: Developing molecular biomarkers for cancer. Science, 2003, 299(5613), 1679-80.
[78]
Rinner, B.; Weinhaeusel, A.; Lohberger, B.; Froehlich, E.V.; Pulverer, W.; Fischer, C. Chordoma characterization of significant changes of the DNA methylation pattern. PLoS One, 2013, 8(3), e56609.
[http://dx.doi.org/10.1371/journal.pone.0056609]
[79]
Alholle, A.; Brini, A.T.; Bauer, J.; Gharanei, S.; Niada, S.; Slater, A.; Gentle, D.; Maher, E.R.; Jeys, L.; Grimer, R.; Sumathi, V.P.; Latif, F. Genome-wide DNA methylation profiling of recurrent and non-recurrent chordomas. Epigenetics, 2015, 10(3), 213-220.
[http://dx.doi.org/10.1080/15592294.2015.1006497] [PMID: 25621392]
[80]
Marucci, G.; Morandi, L.; Mazzatenta, D.; Frank, G.; Pasquini, E.; Foschini, M.P. MGMT promoter methylation status in clival chordoma. J. Neurooncol., 2014, 118(2), 271-276.
[http://dx.doi.org/10.1007/s11060-014-1445-y] [PMID: 24771251]
[81]
Alnahhas, I.; Alsawas, M.; Rayi, A.; Palmer, J.D.; Raval, R.; Ong, S. Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: A systematic review and meta-analysis. Neuro-Oncology Adv., 2020, 2(1), vdaa082.
[http://dx.doi.org/10.1093/noajnl/vdaa082]
[82]
Beck, H.C.; Petersen, J.; Nielsen, S.J.; Morsczeck, C.; Jensen, P.B.; Sehested, M.; Grauslund, M. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat. Electrophoresis, 2010, 31(16), 2714-2721.
[http://dx.doi.org/10.1002/elps.201000033] [PMID: 20717991]
[83]
Cao, X.; Lu, Y.; Liu, Y.; Zhou, Y.; Song, H.; Zhang, W.; Davis, D.; Cui, J.; Hao, S.; Jung, J.; Wu, Q.; Park, D.M.; Yang, C. Combination of PARP inhibitor and temozolomide to suppress chordoma progression. J. Mol. Med. (Berl.), 2019, 97(8), 1183-1193.
[http://dx.doi.org/10.1007/s00109-019-01802-z] [PMID: 31201471]
[84]
Chi, S.; Fouladi, M.; Shukla, N.; Bourdeaut, F.; Margol, A.; Makin, G. Abstract A175: Phase 1 study of the EZH2 inhibitor, tazemetostat, in children with relapsed or refractory INI1-negative tumors including rhabdoid tumors, epithelioid sarcoma, chordoma, and synovial sarcoma. In: Mol. Cancer Ther; , 2018. 17, p. (1_Suppl)A175.
[85]
Monga, V.; Dodd, R.; Scherer, A.; Gutierrez, W.R.; Tanas, M.; Mott, S.L.; Milhem, M.M. Phase Ib study of decitabine in combination with gemcitabine in treatment of advanced soft tissue and bone sarcomas. J. Clin. Oncol., 2020, 38(15)(Suppl.), 11550-11550.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.11550]
[86]
Bates, G.E.; Taub, R.N.; Matushansky, I.; Uldrick, T.S.; Khandker, M.; Bressler, Y.; Wang, Y. A phase I/II study of azacitidine in combination with temozolomide in patients with unresectable or metastatic soft tissue sarcoma or malignant mesothelioma. J. Clin. Oncol., 2014, 32(15)(Suppl.), 10560-10560.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.10560]
[87]
Vitfell-Rasmussen, J.; Judson, I.; Safwat, A.; Jones, R.L.; Rossen, P.B.; Lind-Hansen, M.; Knoblauch, P.; Krarup-Hansen, A. A phase I/II clinical trial of belinostat (PXD101) in combination with doxorubicin in patients with soft tissue sarcomas. Sarcoma, 2016, 2016, 2090271.
[http://dx.doi.org/10.1155/2016/2090271] [PMID: 27403082]
[88]
Cassier, P.A.; Lefranc, A.; Amela, E.Y.; Chevreau, C.; Bui, B.N.; Lecesne, A.; Ray-Coquard, I.; Chabaud, S.; Penel, N.; Berge, Y.; Dômont, J.; Italiano, A.; Duffaud, F.; Cadore, A.C.; Polivka, V.; Blay, J.Y. A phase II trial of panobinostat in patients with advanced pretreated soft tissue sarcoma. A study from the French Sarcoma Group. Br. J. Cancer, 2013, 109(4), 909-914.
[http://dx.doi.org/10.1038/bjc.2013.442] [PMID: 23922114]
[89]
Chen, Y.; Gao, D-Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 128-141.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[90]
van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; Cooper, W.A.; Kritharides, L.; Ridley, L.; Pattison, S.T.; MacDiarmid, J.; Brahmbhatt, H.; Reid, G. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol., 2017, 18(10), 1386-1396.
[http://dx.doi.org/10.1016/S1470-2045(17)30621-6] [PMID: 28870611]
[91]
Lau, C.S.M.; Mahendraraj, K.; Ward, A.; Chamberlain, R.S. Pediatric chordomas: A population-based clinical outcome study involving 86 patients from the Surveillance, Epidemiology, and End Result (SEER) database (1973-2011). Pediatr. Neurosurg., 2016, 51(3), 127-136.
[http://dx.doi.org/10.1159/000442990] [PMID: 26881831]
[92]
Beccaria, K.; Tauziède-Espariat, A.; Monnien, F.; Adle-Biassette, H.; Masliah-Planchon, J.; Pierron, G.; Maillot, L.; Polivka, M.; Laquerrière, A.; Bouillot-Eimer, S.; Gimbert, E.; Gauchotte, G.; Coffinet, L.; Sevestre, H.; Alapetite, C.; Bolle, S.; Thompson, D.; Bouazza, S.; George, B.; Zérah, M.; Sainte-Rose, C.; Puget, S.; Varlet, P. Pediatric chordomas: Results of a multicentric study of 40 children and proposal for a histopathological prognostic grading system and new therapeutic strategies. J. Neuropathol. Exp. Neurol., 2018, 77(3), 207-215.
[http://dx.doi.org/10.1093/jnen/nlx118] [PMID: 29361006]
[93]
Malgulwar, P.B.; Pathak, P.; Singh, M.; Kale, S.S.; Suri, V.; Sarkar, C.; Sharma, M.C. Downregulation of SMARCB1/INI1 expression in pediatric chordomas correlates with upregulation of miR-671-5p and miR-193a-5p expressions. Brain Tumor Pathol., 2017, 34(4), 155-159.
[http://dx.doi.org/10.1007/s10014-017-0295-7] [PMID: 28825187]
[94]
Wei, J-W.; Huang, K.; Yang, C.; Kang, C-S. Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep., 2017, 37(1), 3-9.
[http://dx.doi.org/10.3892/or.2016.5236] [PMID: 27841002]
[95]
Li, Z.; Zhang, Y.; Ding, N.; Zhao, Y.; Ye, Z.; Shen, L.; Yi, H.; Zhu, Y. Inhibition of lncRNA XIST improves myocardial I/R injury by targeting miR-133a through inhibition of autophagy and regulation of SOCS2. Mol. Ther. Nucleic Acids, 2019, 18, 764-773.
[http://dx.doi.org/10.1016/j.omtn.2019.10.004] [PMID: 31734557]
[96]
Huang, W.; Yan, Y-G.; Wang, W-J.; Ouyang, Z-H.; Li, X-L.; Zhang, T-L.; Wang, X.B.; Wang, B.; Lv, G.H.; Li, J.; Zou, M.X. Development and validation of a 6-miRNA prognostic signature in spinal chordoma. Front. Oncol., 2020, 10, 556902.
[http://dx.doi.org/10.3389/fonc.2020.556902] [PMID: 33194623]
[97]
Mao, H.; Wang, K.; Feng, Y.; Zhang, J.; Pan, L.; Zhan, Y.; Sheng, H.; Luo, G. Prognostic role of long non-coding RNA XIST expression in patients with solid tumors: A meta-analysis. Cancer Cell Int., 2018, 18(1), 34.
[http://dx.doi.org/10.1186/s12935-018-0535-x] [PMID: 29556138]
[98]
Lu, G.; Ma, Y.; Jia, C.; Yang, H.; Xie, R.; Luo, P. Reduced miR-125a levels associated with poor survival of patients with hepatocellular cancer. Oncol. Lett., 2017.
[http://dx.doi.org/10.3892/ol.2017.6902]
[99]
Sun, J.; Shi, H.; Lai, N.; Liao, K.; Zhang, S.; Lu, X. Overexpression of microRNA-155 predicts poor prognosis in glioma patients. Med. Oncol., 2014, 31(4), 911.
[http://dx.doi.org/10.1007/s12032-014-0911-x] [PMID: 24623016]
[100]
Chen, Y.; Min, L.; Ren, C.; Xu, X.; Yang, J.; Sun, X. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One, 2017, 12(2), e0171751.
[101]
Zeng, L-S.; Yang, X-Z.; Wen, Y-F.; Mail, S.J.; Wang, M-H.; Zhang, M-Y.; Zheng, X.F.; Wang, H.Y. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY), 2016, 8(6), 1236-1249.
[http://dx.doi.org/10.18632/aging.100980] [PMID: 27295551]
[102]
You, C.; Liang, H.; Sun, W.; Li, J.; Liu, Y.; Fan, Q.; Zhang, H.; Yue, X.; Li, J.; Chen, X.; Ba, Y. Deregulation of the miR-16-KRAS axis promotes colorectal cancer. Sci. Rep., 2016, 6(1), 37459.
[http://dx.doi.org/10.1038/srep37459] [PMID: 27857191]
[103]
Lübbert, M.; Suciu, S.; Baila, L.; Rüter, B.H.; Platzbecker, U.; Giagounidis, A.; Selleslag, D.; Labar, B.; Germing, U.; Salih, H.R.; Beeldens, F.; Muus, P.; Pflüger, K.H.; Coens, C.; Hagemeijer, A.; Eckart Schaefer, H.; Ganser, A.; Aul, C.; de Witte, T.; Wijermans, P.W. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: Final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J. Clin. Oncol., 2011, 29(15), 1987-1996.
[http://dx.doi.org/10.1200/JCO.2010.30.9245] [PMID: 21483003]
[104]
DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; Koller, E.; Havelange, V.; Leber, B.; Esteve, J.; Wang, J.; Pejsa, V.; Hájek, R.; Porkka, K.; Illés, Á.; Lavie, D.; Lemoli, R.M.; Yamamoto, K.; Yoon, S.S.; Jang, J.H.; Yeh, S.P.; Turgut, M.; Hong, W.J.; Zhou, Y.; Potluri, J.; Pratz, K.W. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med., 2020, 383(7), 617-629.
[http://dx.doi.org/10.1056/NEJMoa2012971] [PMID: 32786187]
[105]
Al Shihabi, A.; Davarifar, A.; Nguyen, H.T.L.; Tavanaie, N.; Nelson, S.D.; Yanagawa, J. Personalized chordoma organoids for drug discovery studies. bioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.05.27.446040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy