Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Dopamine as a Potential Target for Learning and Memory: Contributing to Related Neurological Disorders

Author(s): Masoumeh Kourosh-Arami*, Alireza Komaki and Mohammad-Reza Zarrindast

Volume 22, Issue 4, 2023

Published on: 15 June, 2022

Page: [558 - 576] Pages: 19

DOI: 10.2174/1871527321666220418115503

Price: $65

Abstract

It is well established that learning and memory are complex processes. They involve and recruit different brain modulatory neurotransmitter systems. Considerable evidence points to the involvement of dopamine (DA) in learning and memory. Manifestations of the synaptic spatial localization of the effect of DA have gained a great deal of interest. Despite the molecular cloning of the five DA receptor subtypes, the underlying signaling of the DA receptors in spatial learning and memory is less compelling. Fluctuations in the DA level in the brain are associated with many diseases that comprise deficits in learning and memory, including Parkinson's disease, Huntington’s disease, schizophrenia, and Alzheimer's disease. This review aims to briefly summarize existing information regarding the memory performance modified by DA. The signaling of the DA system, particularly examining the origin of DA-modulated memory, is also discussed. Then, several kinds of memories in which DA plays a critical role, including reward signaling, working memory, and long-term plasticity, as well as memory consolidation, are also described. Finally, memory impairment in some DA-related neurological disorders is also examined.

Keywords: Dopamine, dopamine receptor, synaptic plasticity, learning, memory. neurological disorders.

[1]
Bahena-Trujillo R, Flores G, Arias-Montaño JA. Dopamina: Síntesis, liberación y receptores en el Sistema Nervioso Central. Rev Bioet 2000; 11(1): 39-60.
[2]
Citri A, Malenka RC. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology 2008; 33(1): 18-41.
[http://dx.doi.org/10.1038/sj.npp.1301559] [PMID: 17728696]
[3]
Lisman J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: Long-term potentiation, long-term depression, short-term potentiation and scaling. Philos Trans R Soc Lond B Biol Sci 2017; 372(1715): 20160260.
[http://dx.doi.org/10.1098/rstb.2016.0260] [PMID: 28093558]
[4]
Kemp A, Manahan-Vaughan D. The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo. Cereb Cortex 2005; 15(7): 1037-43.
[http://dx.doi.org/10.1093/cercor/bhh204] [PMID: 15537670]
[5]
Hansen N, Manahan-Vaughan D. Hippocampal long-term potentiation that is elicited by perforant path stimulation or that occurs in conjunction with spatial learning is tightly controlled by beta-adrenoreceptors and the locus coeruleus. Hippocampus 2015; 25(11): 1285-98.
[http://dx.doi.org/10.1002/hipo.22436] [PMID: 25727388]
[6]
Twarkowski H, Manahan-Vaughan D. Loss of catecholaminergic neuromodulation of persistent forms of hippocampal synaptic plasticity with increasing age. Front Synaptic Neurosci 2016; 8: 30.
[http://dx.doi.org/10.3389/fnsyn.2016.00030] [PMID: 27725799]
[7]
Manahan-Vaughan D, Kulla A. Regulation of depotentiation and long-term potentiation in the dentate gyrus of freely moving rats by dopamine D2-like receptors. Cereb Cortex 2003; 13(2): 123-35.
[http://dx.doi.org/10.1093/cercor/13.2.123] [PMID: 12507943]
[8]
Madadi Asl M, Vahabie A-H, Valizadeh A. Dopaminergic modulation of synaptic plasticity, its role in neuropsychiatric disorders, and its computational modeling. Basic Clin Neurosci 2019; 10(1): 1-12.
[PMID: 31031889]
[9]
Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24(4): 845-58.
[http://dx.doi.org/10.1093/cercor/bhs362] [PMID: 23183712]
[10]
Lemon N, Manahan-Vaughan D. Dopamine D1/D5 receptors contribute to de novo hippocampal LTD mediated by novel spatial exploration or locus coeruleus activity. Cereb Cortex 2012; 22(9): 2131-8.
[http://dx.doi.org/10.1093/cercor/bhr297] [PMID: 22038910]
[11]
Beninger RJ. The role of dopamine in locomotor activity and learning. Brain Res 1983; 287(2): 173-96.
[http://dx.doi.org/10.1016/0165-0173(83)90038-3] [PMID: 6357357]
[12]
Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev 2006; 30(1): 1-23.
[http://dx.doi.org/10.1016/j.neubiorev.2005.03.024] [PMID: 15935475]
[13]
Nieoullon A. Dopamine and the regulation of cognition and attention. Prog Neurobiol 2002; 67(1): 53-83.
[http://dx.doi.org/10.1016/S0301-0082(02)00011-4] [PMID: 12126656]
[14]
Broussard JI, Yang K, Levine AT, et al. Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Rep 2016; 14(8): 1930-9.
[http://dx.doi.org/10.1016/j.celrep.2016.01.070] [PMID: 26904943]
[15]
Rosen ZB, Cheung S, Siegelbaum SA. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci 2015; 18(12): 1763-71.
[http://dx.doi.org/10.1038/nn.4152] [PMID: 26523642]
[16]
Bethus I, Tse D, Morris RG. Dopamine and memory: Modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 2010; 30(5): 1610-8.
[http://dx.doi.org/10.1523/JNEUROSCI.2721-09.2010] [PMID: 20130171]
[17]
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373(3): 711-27.
[http://dx.doi.org/10.1007/s00441-018-2800-7] [PMID: 29470647]
[18]
Smith CC, Greene RW. CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci 2012; 32(18): 6072-80.
[http://dx.doi.org/10.1523/JNEUROSCI.6486-11.2012] [PMID: 22553014]
[19]
Rankin ML, et al. 3.1 Molecular pharmacology of the dopamine receptors. Dopamine Handbook. 2010; p. 63.
[20]
Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63(1): 182-217.
[http://dx.doi.org/10.1124/pr.110.002642] [PMID: 21303898]
[21]
Sibley DR, Monsma FJ Jr. Molecular biology of dopamine receptors. Trends Pharmacol Sci 1992; 13(2): 61-9.
[http://dx.doi.org/10.1016/0165-6147(92)90025-2] [PMID: 1561715]
[22]
Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev 2000; 24(1): 125-32.
[http://dx.doi.org/10.1016/S0149-7634(99)00063-9] [PMID: 10654668]
[23]
González-Burgos I, Feria-Velasco A. Serotonin/dopamine interaction in memory formation. Prog Brain Res 2008; 172: 603-23.
[http://dx.doi.org/10.1016/S0079-6123(08)00928-X] [PMID: 18772052]
[24]
Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: From structure to function. Physiol Rev 1998; 78(1): 189-225.
[http://dx.doi.org/10.1152/physrev.1998.78.1.189] [PMID: 9457173]
[25]
Gingrich JA, Caron MG. Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 1993; 16(1): 299-321.
[http://dx.doi.org/10.1146/annurev.ne.16.030193.001503] [PMID: 8460895]
[26]
De Mei C, Ramos M, Iitaka C, Borrelli E. Getting specialized: Presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 2009; 9(1): 53-8.
[http://dx.doi.org/10.1016/j.coph.2008.12.002] [PMID: 19138563]
[27]
Usiello A, Baik JH, Rougé-Pont F, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000; 408(6809): 199-203.
[http://dx.doi.org/10.1038/35041572] [PMID: 11089973]
[28]
Bonci A, Hopf FW. The dopamine D2 receptor: New surprises from an old friend. Neuron 2005; 47(3): 335-8.
[http://dx.doi.org/10.1016/j.neuron.2005.07.015] [PMID: 16055058]
[29]
Anzalone A, Lizardi-Ortiz JE, Ramos M, et al. Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors. J Neurosci 2012; 32(26): 9023-34.
[http://dx.doi.org/10.1523/JNEUROSCI.0918-12.2012] [PMID: 22745501]
[30]
Bello EP, Mateo Y, Gelman DM, et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci 2011; 14(8): 1033-8.
[http://dx.doi.org/10.1038/nn.2862] [PMID: 21743470]
[31]
Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein betagamma subunits. J Neurosci 2003; 23(12): 5079-87.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-05079.2003] [PMID: 12832531]
[32]
Jones S, Bonci A. Synaptic plasticity and drug addiction. Curr Opin Pharmacol 2005; 5(1): 20-5.
[http://dx.doi.org/10.1016/j.coph.2004.08.011] [PMID: 15661621]
[33]
Linden J, James AS, McDaniel C, Jentsch JD. Dopamine D2 receptors in dopaminergic neurons modulate performance in a reversal learning task in mice. eNeuro 2018; 5(1): ENEURO.0229-17.2018.
[http://dx.doi.org/10.1523/ENEURO.0229-17.2018] [PMID: 29527566]
[34]
Rocchetti J, Isingrini E, Dal Bo G, et al. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol Psychiatry 2015; 77(6): 513-25.
[http://dx.doi.org/10.1016/j.biopsych.2014.03.013] [PMID: 24742619]
[35]
Kemp A, Manahan-Vaughan D. Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. Proc Natl Acad Sci USA 2004; 101(21): 8192-7.
[http://dx.doi.org/10.1073/pnas.0402650101] [PMID: 15150407]
[36]
Ge Y, Dong Z, Bagot RC, et al. Hippocampal long-term depression is required for the consolidation of spatial memory. Proc Natl Acad Sci USA 2010; 107(38): 16697-702.
[http://dx.doi.org/10.1073/pnas.1008200107] [PMID: 20823230]
[37]
Goh JJ, Manahan-Vaughan D. Spatial object recognition enables endogenous LTD that curtails LTP in the mouse hippocampus. Cereb Cortex 2013; 23(5): 1118-25.
[http://dx.doi.org/10.1093/cercor/bhs089] [PMID: 22510536]
[38]
Nicholls RE, Alarcon JM, Malleret G, et al. Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron 2008; 58(1): 104-17.
[http://dx.doi.org/10.1016/j.neuron.2008.01.039] [PMID: 18400167]
[39]
Peineau S, Nicolas CS, Bortolotto ZA, et al. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: Evidence for a role of GSK-3 but not other serine/threonine kinases. Mol Brain 2009; 2(1): 22.
[http://dx.doi.org/10.1186/1756-6606-2-22] [PMID: 19583853]
[40]
Sariñana J, Kitamura T, Künzler P, Sultzman L, Tonegawa S. Differential roles of the dopamine 1-class receptors, D1R and D5R, in hippocampal dependent memory. Proc Natl Acad Sci USA 2014; 111(22): 8245-50.
[http://dx.doi.org/10.1073/pnas.1407395111] [PMID: 24843151]
[41]
Wang M, Datta D, Enwright J, et al. A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology 2019; 150: 46-58.
[http://dx.doi.org/10.1016/j.neuropharm.2019.03.001] [PMID: 30858103]
[42]
Beaulieu J-M, Tirotta E, Sotnikova TD, et al. Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 2007; 27(4): 881-5.
[http://dx.doi.org/10.1523/JNEUROSCI.5074-06.2007] [PMID: 17251429]
[43]
Thompson SM, Capogna M, Scanziani M. Presynaptic inhibition in the hippocampus. Trends Neurosci 1993; 16(6): 222-7.
[http://dx.doi.org/10.1016/0166-2236(93)90160-N] [PMID: 7688163]
[44]
Wu L-G, Saggau P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 1997; 20(5): 204-12.
[http://dx.doi.org/10.1016/S0166-2236(96)01015-6] [PMID: 9141196]
[45]
Starke K, Göthert M, Kilbinger H. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 1989; 69(3): 864-989.
[http://dx.doi.org/10.1152/physrev.1989.69.3.864] [PMID: 2568648]
[46]
Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 1994; 17(12): 531-6.
[http://dx.doi.org/10.1016/0166-2236(94)90157-0] [PMID: 7532338]
[47]
Suaud-Chagny MF, Ponec J, Gonon F. Presynaptic autoinhibition of the electrically evoked dopamine release studied in the rat olfactory tubercle by in vivo electrochemistry. Neuroscience 1991; 45(3): 641-52.
[http://dx.doi.org/10.1016/0306-4522(91)90277-U] [PMID: 1775239]
[48]
Groman SM, James AS, Seu E, Crawford MA, Harpster SN, Jentsch JD. Monoamine levels within the orbitofrontal cortex and putamen interact to predict reversal learning performance. Biol Psychiatry 2013; 73(8): 756-62.
[http://dx.doi.org/10.1016/j.biopsych.2012.12.002] [PMID: 23332512]
[49]
Groman SM, James AS, Seu E, et al. In the blink of an eye: Relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate. J Neurosci 2014; 34(43): 14443-54.
[http://dx.doi.org/10.1523/JNEUROSCI.3037-14.2014] [PMID: 25339755]
[50]
Nagai T, Takuma K, Kamei H, et al. Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn Mem 2007; 14(3): 117-25.
[http://dx.doi.org/10.1101/lm.461407] [PMID: 17337702]
[51]
David O, Barrera I, Gould N, Gal-Ben-Ari S, Rosenblum K. D1 dopamine receptor activation induces neuronal eEF2 pathway-dependent protein synthesis. Front Mol Neurosci 2020; 13: 67.
[http://dx.doi.org/10.3389/fnmol.2020.00067] [PMID: 32499677]
[52]
Zhang J, Ko SY, Liao Y, et al. Activation of the dopamine D1 receptor can extend long-term spatial memory persistence via PKA signaling in mice. Neurobiol Learn Mem 2018; 155: 568-77.
[http://dx.doi.org/10.1016/j.nlm.2018.05.016] [PMID: 29803941]
[53]
Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transd 2004; 24(3): 165-205.
[http://dx.doi.org/10.1081/RRS-200029981]
[54]
Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 2004; 27(1): 107-44.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144206] [PMID: 15217328]
[55]
Beaulieu J-M, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122(2): 261-73.
[http://dx.doi.org/10.1016/j.cell.2005.05.012] [PMID: 16051150]
[56]
Etter G, Krezel W. Dopamine D2 receptor controls hilar mossy cells excitability. Hippocampus 2014; 24(7): 725-32.
[http://dx.doi.org/10.1002/hipo.22280] [PMID: 24753432]
[57]
Cowan N. Working memory underpins cognitive development, learning, and education. Educ Psychol Rev 2014; 26(2): 197-223.
[http://dx.doi.org/10.1007/s10648-013-9246-y] [PMID: 25346585]
[58]
Marié R-M, Defer G-L. Working memory and dopamine: Clinical and experimental clues. Curr Opin Neurol 2003; 16 (Suppl. 2): S29-35.
[http://dx.doi.org/10.1097/00019052-200312002-00006] [PMID: 15129848]
[59]
Klaus K, Pennington K. Dopamine and working memory: Genetic variation, stress and implications for mental health Processes of Visuospatial Attention and Working Memory. Springer 2019; pp. 369-91.
[http://dx.doi.org/10.1007/7854_2019_113]
[60]
Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979; 205(4409): 929-32.
[http://dx.doi.org/10.1126/science.112679] [PMID: 112679]
[61]
Zahrt J, Taylor JR, Mathew RG, Arnsten AF. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 1997; 17(21): 8528-35.
[http://dx.doi.org/10.1523/JNEUROSCI.17-21-08528.1997] [PMID: 9334425]
[62]
Williams G, Goldman-Rakic P. Blockade of dopamine D1 receptors enhances memory fields of prefrontal neurons in primate cerebral cortex. Nature 1995; 376: 572-5.
[http://dx.doi.org/10.1038/376572a0] [PMID: 7637804]
[63]
Surmeier DJ. Dopamine and working memory mechanisms in prefrontal cortex. J Physiol 2007; 581(Pt 3): 885.
[http://dx.doi.org/10.1113/jphysiol.2007.134502] [PMID: 17495037]
[64]
Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science 1991; 251(4996): 947-50.
[http://dx.doi.org/10.1126/science.1825731] [PMID: 1825731]
[65]
Dent MF, Neill DB. Dose-dependent effects of prefrontal dopamine on behavioral state in rats. Behav Neurosci 2012; 126(5): 620-39.
[http://dx.doi.org/10.1037/a0029640] [PMID: 22925081]
[66]
Bezu M, Maliković J, Kristofova M, et al. Spatial working memory in male rats: Pre-experience and task dependent roles of dopamine D1-and D2-like receptors. Front Behav Neurosci 2017; 11: 196.
[http://dx.doi.org/10.3389/fnbeh.2017.00196] [PMID: 29081740]
[67]
Lidow MS, Goldman-Rakic PS. A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 1994; 91(10): 4353-6.
[http://dx.doi.org/10.1073/pnas.91.10.4353] [PMID: 8183912]
[68]
Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 1994; 11(4): 245-56.
[http://dx.doi.org/10.1038/sj.npp.1380111] [PMID: 7531978]
[69]
Gasbarri A, Sulli A, Innocenzi R, Pacitti C, Brioni JD. Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 1996; 74(4): 1037-44.
[http://dx.doi.org/10.1016/0306-4522(96)00202-3] [PMID: 8895872]
[70]
Arnsten AF, Cai JX, Steere JC, Goldman-Rakic PS. Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: The effects of quinpirole on memory and motor performance in monkeys. J Neurosci 1995; 15(5 Pt 1): 3429-39.
[http://dx.doi.org/10.1523/JNEUROSCI.15-05-03429.1995] [PMID: 7751922]
[71]
Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 1996; 93(3): 1325-9.
[http://dx.doi.org/10.1073/pnas.93.3.1325] [PMID: 8577763]
[72]
Umegaki H, Munoz J, Meyer RC, et al. Involvement of dopamine D(2) receptors in complex maze learning and acetylcholine release in ventral hippocampus of rats. Neuroscience 2001; 103(1): 27-33.
[http://dx.doi.org/10.1016/S0306-4522(00)00542-X] [PMID: 11311785]
[73]
Wilkerson A, Levin ED. Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats. Neuroscience 1999; 89(3): 743-9.
[http://dx.doi.org/10.1016/S0306-4522(98)00346-7] [PMID: 10199609]
[74]
Packard MG, McGaugh JL. Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behav Neurosci 1992; 106(3): 439-46.
[http://dx.doi.org/10.1037/0735-7044.106.3.439] [PMID: 1616610]
[75]
El-Ghundi M, O’Dowd BF, George SR. Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci 2007; 18(1): 37-66.
[http://dx.doi.org/10.1515/REVNEURO.2007.18.1.37] [PMID: 17405450]
[76]
Moraga-Amaro R, González H, Ugalde V, et al. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology 2016; 103: 222-35.
[http://dx.doi.org/10.1016/j.neuropharm.2015.12.018] [PMID: 26714288]
[77]
Phillips AG. Mesocorticolimbic dopamine: A neurochemical link between motivation and memory. International Congress Series. Elsevier 2003.
[http://dx.doi.org/10.1016/S0531-5131(03)00188-2]
[78]
Pedraza C, Navarro J, García F. Implicación de la dopamina en los procesos cognitivos del aprendizaje y la memoria. Psiquiatría biológica 2005; 12(6): 232-6.
[79]
Seamans J, Floresco S, Phillips A. Selective impairment on a delayed radial arm task following local administration of a selective D1, but not a D2, antagonist into the prefrontal cortex. Soc Neurosci Abstr. 1995.
[80]
Druzin MY, Kurzina NP, Malinina EP, Kozlov AP. The effects of local application of D2 selective dopaminergic drugs into the medial prefrontal cortex of rats in a delayed spatial choice task. Behav Brain Res 2000; 109(1): 99-111.
[http://dx.doi.org/10.1016/S0166-4328(99)00166-7] [PMID: 10699662]
[81]
Taghzouti K, Louilot A, Herman JP, Le Moal M, Simon H. Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behav Neural Biol 1985; 44(3): 354-63.
[http://dx.doi.org/10.1016/S0163-1047(85)90640-5] [PMID: 3936470]
[82]
Steele TD, Hodges DB Jr, Levesque TR, Locke KW. D1 agonist dihydrexidine releases acetylcholine and improves cognitive performance in rats. Pharmacol Biochem Behav 1997; 58(2): 477-83.
[http://dx.doi.org/10.1016/S0091-3057(97)00290-6] [PMID: 9300608]
[83]
Mele A, Avena M, Roullet P, et al. Nucleus accumbens dopamine receptors in the consolidation of spatial memory. Behav Pharmacol 2004; 15(5-6): 423-31.
[http://dx.doi.org/10.1097/00008877-200409000-00017] [PMID: 15343069]
[84]
Setlow B, McGaugh JL. Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. Behav Neurosci 1998; 112(3): 603-10.
[http://dx.doi.org/10.1037/0735-7044.112.3.603] [PMID: 9676976]
[85]
Adriani W, Sargolini F, Coccurello R, Oliverio A, Mele A. Role of dopaminergic system in reactivity to spatial and non-spatial changes in mice. Psychopharmacology (Berl) 2000; 150(1): 67-76.
[http://dx.doi.org/10.1007/s002130000423] [PMID: 10867978]
[86]
Tran AH, Tamura R, Uwano T, et al. Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice. Proc Natl Acad Sci USA 2002; 99(13): 8986-91.
[http://dx.doi.org/10.1073/pnas.132284599] [PMID: 12084937]
[87]
Ertuğrul A, Ozdemir H, Vural A, Dalkara T, Meltzer HY, Saka E. The influence of N-desmethylclozapine and clozapine on recognition memory and BDNF expression in hippocampus. Brain Res Bull 2011; 84(2): 144-50.
[http://dx.doi.org/10.1016/j.brainresbull.2010.11.014] [PMID: 21134422]
[88]
Prokopova I, Bahnik S, Doulames V, et al. Synergistic effects of dopamine D2-like receptor antagonist sulpiride and β-blocker propranolol on learning in the carousel maze, a dry-land spatial navigation task. Pharmacol Biochem Behav 2012; 102(1): 151-6.
[http://dx.doi.org/10.1016/j.pbb.2012.04.003] [PMID: 22525744]
[89]
Stuchlik A, Rehakova L, Telensky P, Vales K. Morris water maze learning in Long-Evans rats is differentially affected by blockade of D1-like and D2-like dopamine receptors. Neurosci Lett 2007; 422(3): 169-74.
[http://dx.doi.org/10.1016/j.neulet.2007.06.012] [PMID: 17611026]
[90]
Terry AV Jr, Hill WD, Parikh V, Evans DR, Waller JL, Mahadik SP. Differential effects of chronic haloperidol and olanzapine exposure on brain cholinergic markers and spatial learning in rats. Psychopharmacology (Berl) 2002; 164(4): 360-8.
[http://dx.doi.org/10.1007/s00213-002-1230-z] [PMID: 12457265]
[91]
Ozdemir H, Ertugrul A, Basar K, Saka E. Differential effects of antipsychotics on hippocampal presynaptic protein expressions and recognition memory in a schizophrenia model in mice. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39(1): 62-8.
[http://dx.doi.org/10.1016/j.pnpbp.2012.05.009] [PMID: 22640753]
[92]
Packard MG, McGaugh JL. Quinpirole and d-amphetamine administration posttraining enhances memory on spatial and cued discriminations in a water maze. Psychobiology (Austin Tex) 1994; 22(1): 54-60.
[http://dx.doi.org/10.3758/BF03327080]
[93]
Espadas I, Ortiz O, García-Sanz P, et al. Dopamine D2R is required for hippocampal-dependent memory and plasticity at the CA3-CA1 synapse. Cereb Cortex 2021; 31(4): 2187-204.
[http://dx.doi.org/10.1093/cercor/bhaa354] [PMID: 33264389]
[94]
da Silva WC, Köhler CC, Radiske A, Cammarota M. D1/D5 dopamine receptors modulate spatial memory formation. Neurobiol Learn Mem 2012; 97(2): 271-5.
[http://dx.doi.org/10.1016/j.nlm.2012.01.005] [PMID: 22266268]
[95]
Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420(6911): 70-4.
[http://dx.doi.org/10.1038/nature01138] [PMID: 12422216]
[96]
Laviolette SR, Lipski WJ, Grace AA. A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J Neurosci 2005; 25(26): 6066-75.
[http://dx.doi.org/10.1523/JNEUROSCI.1168-05.2005] [PMID: 15987936]
[97]
Laviolette SR. Dopamine modulation of emotional processing in cortical and subcortical neural circuits: Evidence for a final common pathway in schizophrenia? Schizophr Bull 2007; 33(4): 971-81.
[http://dx.doi.org/10.1093/schbul/sbm048] [PMID: 17519393]
[98]
Matsumoto M, Hikosaka O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 2009; 459(7248): 837-41.
[http://dx.doi.org/10.1038/nature08028] [PMID: 19448610]
[99]
Wang DV, Tsien JZ. Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations. PLoS One 2011; 6(2): e17047.
[http://dx.doi.org/10.1371/journal.pone.0017047] [PMID: 21347237]
[100]
Fiorenza NG, Rosa J, Izquierdo I, Myskiw JC. Modulation of the extinction of two different fear-motivated tasks in three distinct brain areas. Behav Brain Res 2012; 232(1): 210-6.
[http://dx.doi.org/10.1016/j.bbr.2012.04.015] [PMID: 22525015]
[101]
Mueller D, Bravo-Rivera C, Quirk GJ. Infralimbic D2 receptors are necessary for fear extinction and extinction-related tone responses. Biol Psychiatry 2010; 68(11): 1055-60.
[http://dx.doi.org/10.1016/j.biopsych.2010.08.014] [PMID: 20926066]
[102]
Fernandez Espejo E. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory. Neuropsychopharmacology 2003; 28(3): 490-8.
[http://dx.doi.org/10.1038/sj.npp.1300066] [PMID: 12629528]
[103]
Pfeiffer UJ, Fendt M. Prefrontal dopamine D4 receptors are involved in encoding fear extinction. Neuroreport 2006; 17(8): 847-50.
[http://dx.doi.org/10.1097/01.wnr.0000220142.29413.6f] [PMID: 16708027]
[104]
Klappenbach M, Maldonado H, Locatelli F, Kaczer L. Opposite actions of dopamine on aversive and appetitive memories in the crab. Learn Mem 2012; 19(2): 73-83.
[http://dx.doi.org/10.1101/lm.024430.111] [PMID: 22267303]
[105]
Salamone JD. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 1994; 61(2): 117-33.
[http://dx.doi.org/10.1016/0166-4328(94)90153-8] [PMID: 8037860]
[106]
Sokolowski JD, McCullough LD, Salamone JD. Effects of dopamine depletions in the medial prefrontal cortex on active avoidance and escape in the rat. Brain Res 1994; 651(1-2): 293-9.
[http://dx.doi.org/10.1016/0006-8993(94)90709-9] [PMID: 7922578]
[107]
Wadenberg M-L, Ericson E, Magnusson O, Ahlenius S. Suppression of conditioned avoidance behavior by the local application of (-)sulpiride into the ventral, but not the dorsal, striatum of the rat. Biol Psychiatry 1990; 28(4): 297-307.
[http://dx.doi.org/10.1016/0006-3223(90)90657-N] [PMID: 2144458]
[108]
Wietzikoski EC, Boschen SL, Miyoshi E, et al. Roles of D1-like dopamine receptors in the nucleus accumbens and dorsolateral striatum in conditioned avoidance responses. Psychopharmacology (Berl) 2012; 219(1): 159-69.
[http://dx.doi.org/10.1007/s00213-011-2384-3] [PMID: 21720753]
[109]
Castellano C, Cestari V, Cabib S, Puglisi-Allegra S. Post-training dopamine receptor agonists and antagonists affect memory storage in mice irrespective of their selectivity for D1 or D2 receptors. Behav Neural Biol 1991; 56(3): 283-91.
[http://dx.doi.org/10.1016/0163-1047(91)90439-W] [PMID: 1684703]
[110]
Ichihara K, Nabeshima T, Kameyama T. Effects of dopamine receptor agonists on passive avoidance learning in mice: Interaction of dopamine D1 and D2 receptors. Eur J Pharmacol 1992; 213(2): 243-9.
[http://dx.doi.org/10.1016/0014-2999(92)90688-Z] [PMID: 1355736]
[111]
Gasbarri A, Introini-Collison IB, Packard MG, Pacitti C, McGaugh JL. Interaction of cholinergic-dopaminergic systems in the regulation of memory storage in aversively motivated learning tasks. Brain Res 1993; 627(1): 72-8.
[http://dx.doi.org/10.1016/0006-8993(93)90750-H] [PMID: 8293306]
[112]
Inoue T, Tsuchiya K, Koyama T. Effects of typical and atypical antipsychotic drugs on freezing behavior induced by conditioned fear. Pharmacol Biochem Behav 1996; 55(2): 195-201.
[http://dx.doi.org/10.1016/S0091-3057(96)00064-0] [PMID: 8951954]
[113]
Smith JW, Fetsko LA, Xu R, Wang Y. Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning. Neuroscience 2002; 113(4): 755-65.
[http://dx.doi.org/10.1016/S0306-4522(02)00257-9] [PMID: 12182883]
[114]
Kramar CP, Castillo-Díaz F, Gigante ED, Medina JH, Barbano MF. The late consolidation of an aversive memory is promoted by VTA dopamine release in the dorsal hippocampus. Eur J Neurosci 2021; 53(3): 841-51.
[http://dx.doi.org/10.1111/ejn.15076] [PMID: 33617053]
[115]
Beninger RJ, Miller R. Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 1998; 22(2): 335-45.
[http://dx.doi.org/10.1016/S0149-7634(97)00019-5] [PMID: 9579323]
[116]
Wang AR, Groome A, Taniguchi L, Eshel N, Bentzley BS. The role of dopamine in reward-related behavior: Shining new light on an old debate. J Neurophysiol 2020; 124(2): 309-11.
[http://dx.doi.org/10.1152/jn.00323.2020] [PMID: 32639896]
[117]
Wise RA, Spindler J, deWit H, Gerberg GJ. Neuroleptic-induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 1978; 201(4352): 262-4.
[http://dx.doi.org/10.1126/science.566469] [PMID: 566469]
[118]
Salamone JD. Functions of mesolimbic dopamine: Changing concepts and shifting paradigms. Springer 2007.
[119]
Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda) 2012; 27(3): 167-77.
[http://dx.doi.org/10.1152/physiol.00004.2012] [PMID: 22689792]
[120]
Woolverton WL, Virus RM. The effects of a D1 and a D2 dopamine antagonist on behavior maintained by cocaine or food. Pharmacol Biochem Behav 1989; 32(3): 691-7.
[http://dx.doi.org/10.1016/0091-3057(89)90019-1] [PMID: 2662223]
[121]
McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF. Encoding of aversion by dopamine and the nucleus accumbens. Front Neurosci 2012; 6: 137.
[http://dx.doi.org/10.3389/fnins.2012.00137] [PMID: 23055953]
[122]
Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol 2013; 23(2): 229-38.
[http://dx.doi.org/10.1016/j.conb.2012.11.012] [PMID: 23267662]
[123]
Willick ML, Kokkinidis L. The effects of ventral tegmental administration of GABAA, GABAB and NMDA receptor agonists on medial forebrain bundle self-stimulation. Behav Brain Res 1995; 70(1): 31-6.
[http://dx.doi.org/10.1016/0166-4328(94)00181-E] [PMID: 8519426]
[124]
Adamantidis AR, Tsai HC, Boutrel B, et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 2011; 31(30): 10829-35.
[http://dx.doi.org/10.1523/JNEUROSCI.2246-11.2011] [PMID: 21795535]
[125]
Smith-Roe SL, Kelley AE. Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 2000; 20(20): 7737-42.
[http://dx.doi.org/10.1523/JNEUROSCI.20-20-07737.2000] [PMID: 11027236]
[126]
Zarrindast M-R, Bananej M, Khalilzadeh A, Fazli-Tabaei S, Haeri-Rohani A, Rezayof A. Influence of intracerebroventricular administration of dopaminergic drugs on morphine state-dependent memory in the step-down passive avoidance test. Neurobiol Learn Mem 2006; 86(3): 286-92.
[http://dx.doi.org/10.1016/j.nlm.2006.04.002] [PMID: 16723261]
[127]
Rezayof A, Amini R, Rassouli Y, Zarrindast MR. Influence of nitric oxide on morphine-induced amnesia and interactions with dopaminergic receptor agents. Physiol Behav 2006; 88(1-2): 124-31.
[http://dx.doi.org/10.1016/j.physbeh.2006.03.017] [PMID: 16631214]
[128]
Nasehi M, Piri M, Nouri M, Farzin D, Nayer-Nouri T, Zarrindast MR. Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test. Eur J Pharmacol 2010; 634(1-3): 77-83.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.027] [PMID: 20188725]
[129]
Rezayof A, Motevasseli T, Rassouli Y, Zarrindast MR. Dorsal hippocampal dopamine receptors are involved in mediating ethanol state-dependent memory. Life Sci 2007; 80(4): 285-92.
[http://dx.doi.org/10.1016/j.lfs.2006.09.013] [PMID: 17046026]
[130]
Hale MW, Crowe SF. Facilitation and disruption of memory for the passive avoidance task in the day-old chick using dopamine D1 receptor compounds. Behav Pharmacol 2003; 14(7): 525-32.
[http://dx.doi.org/10.1097/00008877-200311000-00005] [PMID: 14557720]
[131]
Chistiakova M, Bannon NM, Bazhenov M, Volgushev M. Heterosynaptic plasticity: Multiple mechanisms and multiple roles. Neuroscientist 2014; 20(5): 483-98.
[http://dx.doi.org/10.1177/1073858414529829] [PMID: 24727248]
[132]
Huttenlocher PR. Neural Plasticity. Harvard University Press 2009.
[133]
Lisman JE, Grace AA. The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron 2005; 46(5): 703-13.
[http://dx.doi.org/10.1016/j.neuron.2005.05.002] [PMID: 15924857]
[134]
Wisman LA, Sahin G, Maingay M, Leanza G, Kirik D. Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J Neurosci 2008; 28(31): 7797-807.
[http://dx.doi.org/10.1523/JNEUROSCI.1885-08.2008] [PMID: 18667612]
[135]
Izquierdo LA, Barros DM, da Costa JC, et al. A link between role of two prefrontal areas in immediate memory and in long-term memory consolidation. Neurobiol Learn Mem 2007; 88(2): 160-6.
[http://dx.doi.org/10.1016/j.nlm.2007.04.014] [PMID: 17562373]
[136]
Jay TM. Dopamine: A potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 2003; 69(6): 375-90.
[http://dx.doi.org/10.1016/S0301-0082(03)00085-6] [PMID: 12880632]
[137]
De Leonibus E, Verheij MM, Mele A, Cools A. Distinct kinds of novelty processing differentially increase extracellular dopamine in different brain regions. Eur J Neurosci 2006; 23(5): 1332-40.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04658.x] [PMID: 16553794]
[138]
Chen Z, Ito K, Fujii S, et al. Roles of dopamine receptors in long-term depression: Enhancement via D1 receptors and inhibition via D2 receptors. Receptors Channels 1996; 4(1): 1-8.
[PMID: 8723642]
[139]
Huang Y-Y, Kandel ER. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci USA 1995; 92(7): 2446-50.
[http://dx.doi.org/10.1073/pnas.92.7.2446] [PMID: 7708662]
[140]
Teather LA, Packard MG, Smith DE, Ellis-Behnke RG, Bazan NG. Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks. Neurobiol Learn Mem 2005; 84(2): 75-84.
[http://dx.doi.org/10.1016/j.nlm.2005.03.006] [PMID: 15936959]
[141]
Gaspar P, Bloch B, Le Moine C. D1 and D2 receptor gene expression in the rat frontal cortex: Cellular localization in different classes of efferent neurons. Eur J Neurosci 1995; 7(5): 1050-63.
[http://dx.doi.org/10.1111/j.1460-9568.1995.tb01092.x] [PMID: 7613610]
[142]
Gurden H, Tassin J-P, Jay TM. Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 1999; 94(4): 1019-27.
[http://dx.doi.org/10.1016/S0306-4522(99)00395-4] [PMID: 10625044]
[143]
Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy. Neuroscience 1995; 65(3): 709-30.
[http://dx.doi.org/10.1016/0306-4522(94)00536-E] [PMID: 7609871]
[144]
Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G. Long-term synaptic depression in the striatum: Physiological and pharmacological characterization. J Neurosci 1992; 12(11): 4224-33.
[http://dx.doi.org/10.1523/JNEUROSCI.12-11-04224.1992] [PMID: 1359031]
[145]
Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 2001; 13(6): 1071-7.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01485.x] [PMID: 11285003]
[146]
Haluk DM, Floresco SB. Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology 2009; 34(8): 2041-52.
[http://dx.doi.org/10.1038/npp.2009.21] [PMID: 19262467]
[147]
Mehta MA, Swainson R, Ogilvie AD, Sahakian J, Robbins TW. Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology (Berl) 2001; 159(1): 10-20.
[http://dx.doi.org/10.1007/s002130100851] [PMID: 11797064]
[148]
Fadok JP, Dickerson TM, Palmiter RD. Dopamine is necessary for cue-dependent fear conditioning. J Neurosci 2009; 29(36): 11089-97.
[http://dx.doi.org/10.1523/JNEUROSCI.1616-09.2009] [PMID: 19741115]
[149]
LaLumiere RT, Nawar EM, McGaugh JL. Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions. Learn Mem 2005; 12(3): 296-301.
[http://dx.doi.org/10.1101/lm.93205] [PMID: 15930508]
[150]
Lalumiere RT, Nguyen LT, McGaugh JL. Post-training intrabasolateral amygdala infusions of dopamine modulate consolidation of inhibitory avoidance memory: Involvement of noradrenergic and cholinergic systems. Eur J Neurosci 2004; 20(10): 2804-10.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03744.x] [PMID: 15548223]
[151]
Ortiz O, Delgado-García JM, Espadas I, et al. Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a-/- mice and in hippocampal siRNA silenced Drd1a mice. J Neurosci 2010; 30(37): 12288-300.
[http://dx.doi.org/10.1523/JNEUROSCI.2655-10.2010] [PMID: 20844125]
[152]
Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M. Dopamine controls persistence of long-term memory storage. Science 2009; 325(5943): 1017-20.
[http://dx.doi.org/10.1126/science.1172545] [PMID: 19696353]
[153]
Fricks-Gleason AN, Khalaj AJ, Marshall JF. Dopamine D1 receptor antagonism impairs extinction of cocaine-cue memories. Behav Brain Res 2012; 226(1): 357-60.
[http://dx.doi.org/10.1016/j.bbr.2011.08.019] [PMID: 21871500]
[154]
Molodtsova GF. [Different roles of dopamine and serotonin in conditioned passive avoidance response of rats]. Zh Vyssh Nerv Deiat Im I P Pavlova 2006; 56(2): 242-6.
[PMID: 16756132]
[155]
Goldman-Rakic PS, Lidow MS, Gallager DW. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 1990; 10(7): 2125-38.
[http://dx.doi.org/10.1523/JNEUROSCI.10-07-02125.1990] [PMID: 2165520]
[156]
Robbins TW. Chemistry of the mind: Neurochemical modulation of prefrontal cortical function. J Comp Neurol 2005; 493(1): 140-6.
[http://dx.doi.org/10.1002/cne.20717] [PMID: 16254988]
[157]
Karakuyu D, Herold C, Güntürkün O, Diekamp B. Differential increase of extracellular dopamine and serotonin in the ‘prefrontal cortex’ and striatum of pigeons during working memory. Eur J Neurosci 2007; 26(8): 2293-302.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05840.x] [PMID: 17908172]
[158]
Williams GV, Rao SG, Goldman-Rakic PS. The physiological role of 5-HT2A receptors in working memory. J Neurosci 2002; 22(7): 2843-54.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02843.2002] [PMID: 11923449]
[159]
Yadid G, Pacak K, Kopin IJ, Goldstein DS. Endogenous serotonin stimulates striatal dopamine release in conscious rats. J Pharmacol Exp Ther 1994; 270(3): 1158-65.
[PMID: 7932166]
[160]
Anguiano-Rodríguez PB, Gaytán-Tocavén L, Olvera-Cortés ME. Striatal serotonin depletion facilitates rat egocentric learning via dopamine modulation. Eur J Pharmacol 2007; 556(1-3): 91-8.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.042] [PMID: 17126827]
[161]
Parent MB, Baxter MG. Septohippocampal acetylcholine: Involved in but not necessary for learning and memory? Learn Mem 2004; 11(1): 9-20.
[http://dx.doi.org/10.1101/lm.69104] [PMID: 14747512]
[162]
Chang Q, Gold PE. Switching memory systems during learning: Changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. J Neurosci 2003; 23(7): 3001-5.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-03001.2003] [PMID: 12684487]
[163]
Collerton D. Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 1986; 19(1): 1-28.
[http://dx.doi.org/10.1016/0306-4522(86)90002-3] [PMID: 3537837]
[164]
Maren S. Synaptic mechanisms of associative memory in the amygdala. Neuron 2005; 47(6): 783-6.
[http://dx.doi.org/10.1016/j.neuron.2005.08.009] [PMID: 16157273]
[165]
Aultman JM, Moghaddam B. Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task. Psychopharmacology (Berl) 2001; 153(3): 353-64.
[http://dx.doi.org/10.1007/s002130000590] [PMID: 11271408]
[166]
Tseng KY, O’Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 2004; 24(22): 5131-9.
[http://dx.doi.org/10.1523/JNEUROSCI.1021-04.2004] [PMID: 15175382]
[167]
Bloomfield MA, Ashok AH, Volkow ND, Howes OD. The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539(7629): 369-77.
[http://dx.doi.org/10.1038/nature20153] [PMID: 27853201]
[168]
Nava F, Carta G, Battasi AM, Gessa GL. D(2) dopamine receptors enable delta(9)-tetrahydrocannabinol induced memory impairment and reduction of hippocampal extracellular acetylcholine concentration. Br J Pharmacol 2000; 130(6): 1201-10.
[http://dx.doi.org/10.1038/sj.bjp.0703413] [PMID: 10903956]
[169]
Ellis KA, Nathan PJ. The pharmacology of human working memory. Int J Neuropsychopharmacol 2001; 4(3): 299-313.
[http://dx.doi.org/10.1017/S1461145701002541] [PMID: 11602036]
[170]
Auger ML, Meccia J, Phillips AG, Floresco SB. Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D1 agonists SKF-81297 and d-Govadine. Neuropharmacology 2020; 162: 107844.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107844] [PMID: 31704272]
[171]
Creed MC, Ntamati NR, Tan KR. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci 2014; 8: 8.
[http://dx.doi.org/10.3389/fnbeh.2014.00008] [PMID: 24478655]
[172]
Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain 1991; 114(Pt 5): 2283-301.
[http://dx.doi.org/10.1093/brain/114.5.2283] [PMID: 1933245]
[173]
Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 1988; 334(6180): 345-8.
[http://dx.doi.org/10.1038/334345a0] [PMID: 2899295]
[174]
Foltynie T, Brayne C, Barker RA. The heterogeneity of idiopathic Parkinson’s disease. J Neurol 2002; 249(2): 138-45.
[http://dx.doi.org/10.1007/PL00007856] [PMID: 11985378]
[175]
Lewis SJ, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 2005; 76(3): 343-8.
[http://dx.doi.org/10.1136/jnnp.2003.033530] [PMID: 15716523]
[176]
Braak H, Rüb U, Jansen Steur EN, Del Tredici K, de Vos RA. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 2005; 64(8): 1404-10.
[http://dx.doi.org/10.1212/01.WNL.0000158422.41380.82] [PMID: 15851731]
[177]
Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003; 23(15): 6351-6.
[http://dx.doi.org/10.1523/JNEUROSCI.23-15-06351.2003] [PMID: 12867520]
[178]
Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC. Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 1998; 121(Pt 5): 949-65.
[http://dx.doi.org/10.1093/brain/121.5.949] [PMID: 9619196]
[179]
Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999; 122(Pt 8): 1437-48.
[http://dx.doi.org/10.1093/brain/122.8.1437] [PMID: 10430830]
[180]
Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 1983; 275(2): 321-8.
[http://dx.doi.org/10.1016/0006-8993(83)90993-9] [PMID: 6626985]
[181]
Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM. Dopaminergic modulation of high-level cognition in Parkinson’s disease: The role of the prefrontal cortex revealed by PET. Brain 2002; 125(Pt 3): 584-94.
[http://dx.doi.org/10.1093/brain/awf052] [PMID: 11872615]
[182]
Mattay VS, Tessitore A, Callicott JH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 2002; 51(2): 156-64.
[http://dx.doi.org/10.1002/ana.10078] [PMID: 11835371]
[183]
Cepeda C, Murphy KP, Parent M, Levine MS. The role of dopamine in Huntington’s disease. Prog Brain Res 2014; 211: 235-54.
[http://dx.doi.org/10.1016/B978-0-444-63425-2.00010-6] [PMID: 24968783]
[184]
Snowden J, Craufurd D, Griffiths H, Thompson J, Neary D. Longitudinal evaluation of cognitive disorder in Huntington’s disease. J Int Neuropsychol Soc 2001; 7(1): 33-44.
[http://dx.doi.org/10.1017/S1355617701711046] [PMID: 11253840]
[185]
Brisch R, Saniotis A, Wolf R, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front Psychiatry 2014; 5: 47.
[PMID: 24904434]
[186]
Martorana A, Koch G. “Is dopamine involved in Alzheimer’s disease?”. Front Aging Neurosci 2014; 6: 252.
[http://dx.doi.org/10.3389/fnagi.2014.00252] [PMID: 25309431]
[187]
Nobili A, Latagliata EC, Viscomi MT, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat Commun 2017; 8(1): 14727.
[http://dx.doi.org/10.1038/ncomms14727] [PMID: 28367951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy