Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Oral Immunization against ETEC with Recombinant Protein-Loaded Chitosan Nano-Structure and its Immunogenicity in Comparison with Subcutaneous Vaccine

Author(s): ZohrehSadat Hosseini, Jafar Amani*, Farzaneh Hosseini, Mohammad Javad Motamedi and Rouhollah Kazemi

Volume 19, Issue 3, 2023

Published on: 06 September, 2022

Page: [410 - 422] Pages: 13

DOI: 10.2174/1573413718666220418112338

Price: $65

Abstract

Background: Enterotoxigenic E. coli (ETEC) can be considered the main cause of traveler’s diarrhea, which is affecting children in developing countries. The bacterium has several virulence factors, including colonization factors (CFs), heat-labile (LT), and heat-stable (ST) toxins. The World Health Organization has designated the development of an ETEC vaccine one of its top goals due to the disease's rising antibiotic resistance and deteriorating access to sources of clean drinking water.

Objective: The objective of this study is to investigate the oral immunogenicity of chitosan nanoparticles (CNPs) encapsulated CCL protein containing CfaB along with STa toxoid, CfaE, and LtB.

Methods: The E. coli BL21DE3 harboring pET-28a-ccl vector was used for protein expression. After purification and confirmation, the protein was encapsulated in CNPs and the particle size was measured. Immunogenicity was assessed by evaluating antibody titers after BALB/c mice vaccination. Finally, the neutralization efficiency of immunized mice sera was evaluated by a rabbit ileal loop test.

Results: The purified protein (~57kDa) was confirmed by Western blotting and the size of CCLCNPs was measured with an average of 112.0nm with 98.8% of encapsulation efficiency. CCLCNPs are able to stimulate the immune system by providing suitable titers of antibodies. The fluid accumulation in the rabbit’s intestine was significantly reduced.

Conclusion: The CCL-CNPs can be considered a candidate for producing oral nanovaccine.

Keywords: Enterotoxigenic Escherichia coli, heat-labile toxin, heat-stable toxin, Chitosan nanoparticles, vaccine, antibodies.

[1]
Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev., 2013, 26(4), 822-880.
[http://dx.doi.org/10.1128/CMR.00022-13] [PMID: 24092857]
[2]
Akhtar, M. Vaccination against ETEC diarrhea in Bangladeshi participants and the influence of age on vaccine induced immune responses; University of Dhaka: Dhaka, Bangladesh, 2019.
[3]
Ahmed, M.C.; Heukelbach, J.; Weddih, A.; Filali-Maltouf, A.; Sidatt, M.; Makhalla, K.; Dahdi, S.; Cheikh Ahmed, A.C.; El-Mami, M.V.; Tate, J.E.; Parashar, U.D.; Benhafid, M. Reduction of hospitalizations with diarrhea among children aged 0-5 years in Nouakchott, Mauritania, following the introduction of rotavirus vaccine. Vaccine, 2019, 37(11), 1407-1411.
[http://dx.doi.org/10.1016/j.vaccine.2019.01.078] [PMID: 30765173]
[4]
Cabrera-Sosa, L.; Ochoa, T.J. Escherichia coli diarrhea.In: Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier, 2020, pp. 481-485.
[http://dx.doi.org/10.1016/B978-0-323-55512-8.00046-6]
[5]
Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; Mathers, C.; Black, R.E. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet, 2012, 379(9832), 2151-2161.
[http://dx.doi.org/10.1016/S0140-6736(12)60560-1] [PMID: 22579125]
[6]
Walker, R.I.; Steele, D.; Aguado, T. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine, 2007, 25(14), 2545-2566.
[http://dx.doi.org/10.1016/j.vaccine.2006.12.028] [PMID: 17224212]
[7]
Begum, Y.A.; Rydberg, H.A.; Thorell, K.; Kwak, Y.K.; Sun, L.; Joffré, E.; Qadri, F.; Sjöling, Å. In situ analyses directly in diarrheal stool reveal large variations in bacterial load and active toxin expression of enterotoxigenic Escherichia coli and Vibrio cholerae. MSphere, 2018, 3(1), e00517-e17.
[http://dx.doi.org/10.1128/mSphere.00517-17] [PMID: 29404412]
[8]
Liu, B. The anti-diarrhea activity of red algae-originated sulphated polysaccharides on ETEC-K88 infected mice. RSC Advances, 2019, 9(5), 2360-2370.
[http://dx.doi.org/10.1039/C8RA09247H]
[9]
von Mentzer, A.; Connor, T.R.; Wieler, L.H.; Semmler, T.; Iguchi, A.; Thomson, N.R.; Rasko, D.A.; Joffre, E.; Corander, J.; Pickard, D.; Wiklund, G.; Svennerholm, A.M.; Sjöling, Å.; Dougan, G. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat. Genet., 2014, 46(12), 1321-1326.
[http://dx.doi.org/10.1038/ng.3145] [PMID: 25383970]
[10]
Dubreuil, J.D.; Isaacson, R.E.; Schifferli, D.M. Animal enterotoxigenic Escherichia coli. Ecosal Plus, 2016, 7(1), 10.1128.
[http://dx.doi.org/10.1128/ecosalplus.ESP-0006-2016] [PMID: 27735786]
[11]
Shojaei Jeshvaghani, F.; Amani, J.; Kazemi, R.; Karimi Rahjerdi, A.; Jafari, M.; Abbasi, S.; Salmanian, A.H. Oral immunization with a plant-derived chimeric protein in mice: Toward the development of a multipotent edible vaccine against E. coli O157: H7 and ETEC. Immunobiology, 2019, 224(2), 262-269.
[http://dx.doi.org/10.1016/j.imbio.2018.12.001] [PMID: 30579628]
[12]
Upadhyay, R.N.; Sharma, R. A review on preparation of herbal anti-diarrheal formulations. Eur. J. Biomed., 2019, 6(2), 429-433.
[13]
Carlin, N.; Svennerholm, A.M. Oral vaccines for enterotoxigenic Escherichia coli. In: Mucosal Vaccines; Elsevier, 2020, pp. 563-578.
[http://dx.doi.org/10.1016/B978-0-12-811924-2.00032-8]
[14]
Chakraborty, S.; Brubaker, J.; Harro, C.; Weirzba, T.; Sack, D. Development of a novel multiplex electrochemiluminescent-based immunoassay to aid enterotoxigenic Escherichia coli vaccine development and evaluations. J. Immunol. Methods, 2019, 470, 6-14.
[http://dx.doi.org/10.1016/j.jim.2019.04.003] [PMID: 31004579]
[15]
Liang, H.; Poncet, D.; Seydoux, E.; Rintala, N.D.; Maciel, M., Jr; Ruiz, S.; Orr, M.T. The TLR4 agonist adjuvant SLA-SE promotes functional mucosal antibodies against a parenterally delivered ETEC vaccine. NPJ Vaccines, 2019, 4(1), 19.
[http://dx.doi.org/10.1038/s41541-019-0116-6] [PMID: 31149350]
[16]
Jelinek, T.; Kollaritsch, H. Vaccination with Dukoral against travelers’ diarrhea (ETEC) and cholera. Expert Rev. Vaccines, 2008, 7(5), 561-567.
[http://dx.doi.org/10.1586/14760584.7.5.561] [PMID: 18564011]
[17]
Hitch, G. A review of guidelines/guidance from various countries around the world for the prevention and management of travellers’ diarrhoea: A pharmacist’s perspective. Pharmacy (Basel), 2019, 7(3), 107.
[http://dx.doi.org/10.3390/pharmacy7030107] [PMID: 31382691]
[18]
Svennerholm, A.M. From cholera to enterotoxigenic Escherichia coli (ETEC) vaccine development. Indian J. Med. Res., 2011, 133(2), 188-196.
[PMID: 21415493]
[19]
Vela Ramirez, J.E.; Sharpe, L.A.; Peppas, N.A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev., 2017, 114, 116-131.
[http://dx.doi.org/10.1016/j.addr.2017.04.008] [PMID: 28438674]
[20]
Wang, Y-Q.; Liu, Y.; Wang, Y.X.; Wu, Y.J.; Jia, P.Y.; Shan, J.J.; Wu, J.; Ma, G.H.; Su, Z.G. The potential adjuvanticity of quaternized chitosan hydrogel based microparticles for porcine reproductive and respiratory syndrome virus inactivated vaccine. Int. Immunopharmacol., 2016, 39, 84-91.
[http://dx.doi.org/10.1016/j.intimp.2016.07.012] [PMID: 27449471]
[21]
Bagheri, S.; Mousavi Gargari, S.L.; Rasooli, I.; Nazarian, S.; Alerasol, M. A CssA, CssB and LTB chimeric protein induces protection against enterotoxigenic Escherichia coli. Braz. J. Infect. Dis., 2014, 18(3), 308-314.
[http://dx.doi.org/10.1016/j.bjid.2013.07.012] [PMID: 24389278]
[22]
Wierzba, T.F.; Bourgis, A. Defining cases of severe pediatric diarrhea for an efficacy trial of an enterotoxigenic Escherichia coli (ETEC) vaccine: Report on an international workshop, Washington DC, March 2016. Vaccine, 2017, 35(4), 503-507.
[http://dx.doi.org/10.1016/j.vaccine.2016.12.006] [PMID: 28034476]
[23]
Lundgren, A.; Bourgeois, L.; Carlin, N.; Clements, J.; Gustafsson, B.; Hartford, M.; Holmgren, J.; Petzold, M.; Walker, R.; Svennerholm, A.M. Safety and immunogenicity of an improved oral inactivated multivalent enterotoxigenic Escherichia coli (ETEC) vaccine administered alone and together with dmLT adjuvant in a double-blind, randomized, placebo-controlled Phase I study. Vaccine, 2014, 32(52), 7077-7084.
[http://dx.doi.org/10.1016/j.vaccine.2014.10.069] [PMID: 25444830]
[24]
Zhang, W.; Sack, D.A. Current progress in developing subunit vaccines against enterotoxigenic Escherichia coli-associated diarrhea. Clin. Vaccine Immunol., 2015, 22(9), 983-991.
[http://dx.doi.org/10.1128/CVI.00224-15] [PMID: 26135975]
[25]
Bernstein, D.I.; Pasetti, M.F.; Brady, R.; Buskirk, A.D.; Wahid, R.; Dickey, M.; Cohen, M.; Baughman, H.; El-Khorazaty, J.; Maier, N.; Sztein, M.B.; Baqar, S.; Bourgeois, A.L. A Phase 1 dose escalating study of double mutant heat-labile toxin LTR192G/L211A (dmLT) from Enterotoxigenic Escherichia coli (ETEC) by sublingual or oral immunization. Vaccine, 2019, 37(4), 602-611.
[http://dx.doi.org/10.1016/j.vaccine.2018.12.011] [PMID: 30563789]
[26]
Bourgeois, A.L.; Wierzba, T.F.; Walker, R.I. Status of vaccine research and development for enterotoxigenic Escherichia coli. Vaccine, 2016, 34(26), 2880-2886.
[http://dx.doi.org/10.1016/j.vaccine.2016.02.076] [PMID: 26988259]
[27]
Li, Y.F.; Poole, S.; Rasulova, F.; McVeigh, A.L.; Savarino, S.J.; Xia, D. A receptor-binding site as revealed by the crystal structure of CfaE, the colonization factor antigen I fimbrial adhesin of enterotoxigenic Escherichia coli. J. Biol. Chem., 2007, 282(33), 23970-23980.
[http://dx.doi.org/10.1074/jbc.M700921200] [PMID: 17569668]
[28]
Gheibi Hayat, S.M.; Mousavi Gargari, S.L.; Nazarian, S. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli. Biologicals, 2016, 44(6), 503-510.
[http://dx.doi.org/10.1016/j.biologicals.2016.09.003] [PMID: 27733309]
[29]
Lundgren, A.; Leach, S.; Tobias, J.; Carlin, N.; Gustafsson, B.; Jertborn, M.; Bourgeois, L.; Walker, R.; Holmgren, J.; Svennerholm, A.M. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein. Vaccine, 2013, 31(8), 1163-1170.
[http://dx.doi.org/10.1016/j.vaccine.2012.12.063] [PMID: 23306362]
[30]
Simuyandi, M. Enterotoxigenic escherichia coli toxins and colonization factors among zambian children presenting with moderate to severe diarrhea to selected health facilities. Arch. Microbiol. Immunol., 2019, 3, 173-184.
[http://dx.doi.org/10.26502/ami.93650039]
[31]
Zheng, W.; Andersson, M.; Mortezaei, N.; Bullitt, E.; Egelman, E. Cryo-EM structure of the CFA/I pilus rod. IUCrJ, 2019, 6(Pt 5), 815-821.
[http://dx.doi.org/10.1107/S2052252519007966] [PMID: 31576215]
[32]
Maciel, M., Jr; Bauer, D.; Baudier, R.L.; Bitoun, J.; Clements, J.D.; Poole, S.T.; Smith, M.A.; Kaminski, R.W.; Savarino, S.J.; Norton, E.B. Intradermal or sublingual delivery and heat-labile enterotoxin proteins shape immunologic responses to a CFA/I fimbria-derived subunit antigen vaccine against enterotoxigenic Escherichia coli. Infect. Immun., 2019, 87(11), e00460-e19.
[http://dx.doi.org/10.1128/IAI.00460-19] [PMID: 31427449]
[33]
Carroll, E.C.; Jin, L.; Mori, A.; Muñoz-Wolf, N.; Oleszycka, E.; Moran, H.B.T.; Mansouri, S.; McEntee, C.P.; Lambe, E.; Agger, E.M.; Andersen, P.; Cunningham, C.; Hertzog, P.; Fitzgerald, K.A.; Bowie, A.G.; Lavelle, E.C. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity, 2016, 44(3), 597-608.
[http://dx.doi.org/10.1016/j.immuni.2016.02.004] [PMID: 26944200]
[34]
Morishita, M.; Peppas, N.A. Is the oral route possible for peptide and protein drug delivery? Drug Discov. Today, 2006, 11(19-20), 905-910.
[http://dx.doi.org/10.1016/j.drudis.2006.08.005] [PMID: 16997140]
[35]
Zaharoff, D.A.; Rogers, C.J.; Hance, K.W.; Schlom, J.; Greiner, J.W. Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 2007, 25(11), 2085-2094.
[http://dx.doi.org/10.1016/j.vaccine.2006.11.034] [PMID: 17258843]
[36]
Qi, L.; Xu, Z.; Jiang, X.; Hu, C.; Zou, X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res., 2004, 339(16), 2693-2700.
[http://dx.doi.org/10.1016/j.carres.2004.09.007] [PMID: 15519328]
[37]
Hajizade, A. Nanoparticles in vaccine development. J. Appl. Biotechnol. Reports, 2015, 1(4), 125-134.
[38]
Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther., 2016, 10, 483-507.
[http://dx.doi.org/10.2147/DDDT.S99651] [PMID: 26869768]
[39]
Kim, S.K. Chitin and chitosan derivatives: Advances in drug discovery and developments; CRC Press: USA, 2013.
[http://dx.doi.org/10.1201/b15636]
[40]
des Rieux, A.; Fievez, V.; Garinot, M.; Schneider, Y.J.; Préat, V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release, 2006, 116(1), 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[41]
Leach, S. Approaches to enhance and evaluate the immunogenicity of an oral ETEC vaccine., 2015.
[42]
Campos, M.; Godson, D.L. The effectiveness and limitations of immune memory: Understanding protective immune responses. Int. J. Parasitol., 2003, 33(5-6), 655-661.
[http://dx.doi.org/10.1016/S0020-7519(03)00066-3] [PMID: 12782062]
[43]
Czerkinsky, C.; Holmgren, J. Mucosal delivery routes for optimal immunization: Targeting immunity to the right tissues.In: Mucosal Vaccines; Springer, 2010, pp. 1-18.
[http://dx.doi.org/10.1007/82_2010_112]
[44]
Holmgren, J.; Bourgeois, L.; Carlin, N.; Clements, J.; Gustafsson, B.; Lundgren, A.; Nygren, E.; Tobias, J.; Walker, R.; Svennerholm, A.M. Development and preclinical evaluation of safety and immunogenicity of an oral ETEC vaccine containing inactivated E. coli bacteria overexpressing colonization factors CFA/I, CS3, CS5 and CS6 combined with a hybrid LT/CT B subunit antigen, administered alone and together with dmLT adjuvant. Vaccine, 2013, 31(20), 2457-2464.
[http://dx.doi.org/10.1016/j.vaccine.2013.03.027] [PMID: 23541621]
[45]
Bollag, D.; Rozycki, M.; Edelstein, S. Protein methods, 2nd ed; Wiley-Liss: New York, 1996.
[46]
Farrell, E.; Brousseau, J-L. Guide for DLS sample preparation. Brookhaven Instrum, 2014, 1(631), 1-3.
[47]
Zhao, K.; Zhang, Y.; Zhang, X.; Li, W.; Shi, C.; Guo, C.; Dai, C.; Chen, Q.; Jin, Z.; Zhao, Y.; Cui, H.; Wang, Y. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int. J. Nanomedicine, 2014, 9, 389-402.
[http://dx.doi.org/10.2147/IJN.S54226] [PMID: 24426783]
[48]
De, S.N.; Chatterje, D.N. An experimental study of the mechanism of action of Vibriod cholerae on the intestinal mucous membrane. J. Pathol. Bacteriol., 1953, 66(2), 559-562.
[http://dx.doi.org/10.1002/path.1700660228] [PMID: 13118463]
[49]
Nazarian, S.; Gargari, S.L.; Rasooli, I.; Alerasol, M.; Bagheri, S.; Alipoor, S.D. Prevalent phenotypic and genotypic profile of enterotoxigenic Escherichia coli among Iranian children. Jpn. J. Infect. Dis., 2014, 67(2), 78-85.
[http://dx.doi.org/10.7883/yoken.67.78] [PMID: 24647248]
[50]
Everest, P.H.; Goossens, H.; Sibbons, P.; Lloyd, D.R.; Knutton, S.; Leece, R.; Ketley, J.M.; Williams, P.H. Pathological changes in the rabbit ileal loop model caused by Campylobacter jejuni from human colitis. J. Med. Microbiol., 1993, 38(5), 316-321.
[http://dx.doi.org/10.1099/00222615-38-5-316] [PMID: 8487288]
[51]
Sahl, J.W.; Sistrunk, J.R.; Baby, N.I.; Begum, Y.; Luo, Q.; Sheikh, A.; Qadri, F.; Fleckenstein, J.M.; Rasko, D.A. Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology. Sci. Rep., 2017, 7(1), 3402.
[http://dx.doi.org/10.1038/s41598-017-03631-x] [PMID: 28611468]
[52]
Sears, K.T.; Tennant, S.M.; Reymann, M.K.; Simon, R.; Konstantopoulos, N.; Blackwelder, W.C.; Barry, E.M.; Pasetti, M.F. Bioactive immune components of anti-diarrheagenic enterotoxigenic Escherichia coli hyperimmune bovine colostrum products. Clin. Vaccine Immunol., 2017, 24(8), e00186-e16.
[http://dx.doi.org/10.1128/CVI.00186-16] [PMID: 28637804]
[53]
Jafari, F.; Shokrzadeh, L.; Hamidian, M.; Salmanzadeh-Ahrabi, S.; Zali, M.R. Acute diarrhea due to enteropathogenic bacteria in patients at hospitals in Tehran. Jpn. J. Infect. Dis., 2008, 61(4), 269-273.
[PMID: 18653967]
[54]
Qadri, F.; Saha, A.; Ahmed, T.; Al Tarique, A.; Begum, Y.A.; Svennerholm, A.M. Disease burden due to enterotoxigenic Escherichia coli in the first 2 years of life in an urban community in Bangladesh. Infect. Immun., 2007, 75(8), 3961-3968.
[http://dx.doi.org/10.1128/IAI.00459-07] [PMID: 17548483]
[55]
Ochoa, T.J.; Ruiz, J.; Molina, M.; Del Valle, L.J.; Vargas, M.; Gil, A.I.; Ecker, L.; Barletta, F.; Hall, E.; Cleary, T.G.; Lanata, C.F. High frequency of antimicrobial drug resistance of diarrheagenic Escherichia coli in infants in Peru. Am. J. Trop. Med. Hyg., 2009, 81(2), 296-301.
[http://dx.doi.org/10.4269/ajtmh.2009.81.296] [PMID: 19635887]
[56]
Begum, Y.A.; Talukder, K.A.; Azmi, I.J.; Shahnaij, M.; Sheikh, A.; Sharmin, S.; Svennerholm, A.M.; Qadri, F. Resistance pattern and molecular characterization of enterotoxigenic Escherichia coli (ETEC) strains isolated in Bangladesh. PLoS One, 2016, 11(7)e0157415
[http://dx.doi.org/10.1371/journal.pone.0157415] [PMID: 27428376]
[57]
Okubo, Y.; Miyairi, I.; Michihata, N.; Morisaki, N.; Kinoshita, N.; Urayama, K.Y.; Yasunaga, H. Recent prescription patterns for children with acute infectious diarrhea. J. Pediatr. Gastroenterol. Nutr., 2019, 68(1), 13-16.
[http://dx.doi.org/10.1097/MPG.0000000000002115] [PMID: 30074577]
[58]
von Baum, H.; Marre, R. Antimicrobial resistance of Escherichia coli and therapeutic implications. Int. J. Med. Microbiol., 2005, 295(6-7), 503-511.
[http://dx.doi.org/10.1016/j.ijmm.2005.07.002] [PMID: 16238024]
[59]
Madureira, A.R.; Pereira, A.; Pintado, M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym., 2015, 130, 429-439.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.030] [PMID: 26076644]
[60]
Khanifar, J.; Hosseini, R.H.; Kazemi, R.; Ramandi, M.F.; Amani, J.; Salmanian, A.H. Prevention of EHEC infection by chitosan nano-structure coupled with synthetic recombinant antigen. J. Microbiol. Methods, 2019, 157, 100-107.
[http://dx.doi.org/10.1016/j.mimet.2019.01.002] [PMID: 30633949]
[61]
Taxt, A.; Aasland, R.; Sommerfelt, H.; Nataro, J.; Puntervoll, P. Heat-stable enterotoxin of enterotoxigenic Escherichia coli as a vaccine target. Infect. Immun., 2010, 78(5), 1824-1831.
[http://dx.doi.org/10.1128/IAI.01397-09] [PMID: 20231404]
[62]
Deng, G.; Zeng, J.; Jian, M.; Liu, W.; Zhang, Z.; Liu, X.; Wang, Y. Nanoparticulated heat-stable (STa) and heat-labile B subunit (LTB) recombinant toxin improves vaccine protection against enterotoxigenic Escherichia coli challenge in mouse. J. Biosci. Bioeng., 2013, 115(2), 147-153.
[http://dx.doi.org/10.1016/j.jbiosc.2012.09.009] [PMID: 23040995]
[63]
Fleckenstein, J.; Sheikh, A.; Qadri, F. Novel antigens for enterotoxigenic Escherichia coli vaccines. Expert Rev. Vaccines, 2014, 13(5), 631-639.
[http://dx.doi.org/10.1586/14760584.2014.905745] [PMID: 24702311]
[64]
Zeinalzadeh, N.; Salmanian, A.H.; Ahangari, G.; Sadeghi, M.; Amani, J.; Bathaie, S.Z.; Jafari, M. Design and characterization of a chimeric multiepitope construct containing CfaB, heat-stable toxoid, CssA, CssB, and heat-labile toxin subunit B of enterotoxigenic Escherichia coli: A bioinformatic approach. Biotechnol. Appl. Biochem., 2014, 61(5), 517-527.
[http://dx.doi.org/10.1002/bab.1196] [PMID: 24372617]
[65]
Zhu, C.; Setty, P.; Boedeker, E.C. Development of live attenuated bacterial vaccines targeting Escherichia coli heat-labile and heat-stable enterotoxins. Vet. Microbiol., 2017, 202, 72-78.
[http://dx.doi.org/10.1016/j.vetmic.2017.04.010] [PMID: 28527491]
[66]
Chen, W.R. Chitin, chitosan, and glycated chitosan regulate immune responses: The novel adjuvants for cancer vaccine. Clin. Develop. Immunol., 2013, 2013.
[67]
Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol., 2014, 64, 353-367.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017] [PMID: 24360899]
[68]
Park, J.H.; Saravanakumar, G.; Kim, K.; Kwon, I.C. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev., 2010, 62(1), 28-41.
[http://dx.doi.org/10.1016/j.addr.2009.10.003] [PMID: 19874862]
[69]
Noroozi, N.; Gargari, S.L.M.; Nazarian, S.; Sarvary, S.; Adriani, R.R. Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles. Iran. J. Basic Med. Sci., 2018, 21(3), 284-291.
[PMID: 29511495]
[70]
Davitt, C.J.; Lavelle, E.C. Delivery strategies to enhance oral vaccination against enteric infections. Adv. Drug Deliv. Rev., 2015, 91, 52-69.
[http://dx.doi.org/10.1016/j.addr.2015.03.007] [PMID: 25817337]
[71]
Svennerholm, A-M.; Holmgren, J.; Sack, D.A. Development of oral vaccines against enterotoxinogenic Escherichia coli diarrhoea. Vaccine, 1989, 7(3), 196-198.
[http://dx.doi.org/10.1016/0264-410X(89)90228-4] [PMID: 2675484]
[72]
Hosseini, Z.S.; Amani, J.; Baghbani Arani, F.; Nazarian, S.; Motamedi, M.J.; Shafighian, F. Immunogenicity of the nanovaccine containing intimin recombinant protein in the BALB/c mice. Clin. Exp. Vaccine Res., 2018, 7(1), 51-60.
[http://dx.doi.org/10.7774/cevr.2018.7.1.51] [PMID: 29399580]
[73]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.X.; Mitter, N.; Yu, C.; Middelberg, A.P. Nanoparticle vaccines. Vaccine, 2014, 32(3), 327-337.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.069] [PMID: 24295808]
[74]
Reddy, S.T.; Rehor, A.; Schmoekel, H.G.; Hubbell, J.A.; Swartz, M.A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release, 2006, 112(1), 26-34.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.006] [PMID: 16529839]
[75]
Reddy, S.T.; van der Vlies, A.J.; Simeoni, E.; Angeli, V.; Randolph, G.J.; O’Neil, C.P.; Lee, L.K.; Swartz, M.A.; Hubbell, J.A. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol., 2007, 25(10), 1159-1164.
[http://dx.doi.org/10.1038/nbt1332] [PMID: 17873867]
[76]
Kouchak, M. Effect of different molecular weights of chitosan on preparation and characterization of insulin loaded nanoparticles by ion gelation method. Int. J. Drug Dev. Res., 2012, 4(2), 271-277.
[77]
Masarudin, M.J.; Cutts, S.M.; Evison, B.J.; Phillips, D.R.; Pigram, P.J. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of [(14)C]-doxorubicin. Nanotechnol. Sci. Appl., 2015, 8, 67-80.
[http://dx.doi.org/10.2147/NSA.S91785] [PMID: 26715842]
[78]
Zhao, K.; Zhang, Y.; Zhang, X.; Shi, C.; Wang, X.; Wang, X.; Jin, Z.; Cui, S. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int. J. Nanomedicine, 2014, 9, 4609-4619.
[http://dx.doi.org/10.2147/IJN.S70633] [PMID: 25356070]
[79]
Schunk, M.K.; Macallum, G.E. Applications and optimization of immunization procedures. ILAR J., 2005, 46(3), 241-257.
[http://dx.doi.org/10.1093/ilar.46.3.241] [PMID: 15953832]
[80]
Amani, J.; Salmanian, A.H.; Rafati, S.; Mousavi, S.L. Immunogenic properties of chimeric protein from espA, eae and tir genes of Escherichia coli O157:H7. Vaccine, 2010, 28(42), 6923-6929.
[http://dx.doi.org/10.1016/j.vaccine.2010.07.061] [PMID: 20709010]
[81]
Nazarian, S.; Gargari, S.L.; Rasooli, I.; Hasannia, S.; Pirooznia, N. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol. Res., 2014, 169(2-3), 205-212.
[http://dx.doi.org/10.1016/j.micres.2013.06.005] [PMID: 23906742]
[82]
Zeinalzadeh, N.; Salmanian, A.H.; Goujani, G.; Amani, J.; Ahangari, G.; Akhavian, A.; Jafari, M. A Chimeric protein of CFA/I, CS6 subunits and LTB/STa toxoid protects immunized mice against enterotoxigenic Escherichia coli. Microbiol. Immunol., 2017, 61(7), 272-279.
[http://dx.doi.org/10.1111/1348-0421.12491] [PMID: 28543534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy