Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Systematic Review Article

Preclinical Studies on Neural Stem/Progenitor Cell Therapy for Ischemic Stroke: A Systematic Review

Author(s): Mengze Zhang, Kan Wang, Chunran Xue, Chong Xie, Ze Wang, Yaying Song, Haojun Yu, Yong Hao* and Yangtai Guan*

Volume 18, Issue 3, 2023

Published on: 20 August, 2022

Page: [380 - 390] Pages: 11

DOI: 10.2174/1574888X17666220410221905

Price: $65

conference banner
Abstract

Background: Neural stem/progenitor cells (NSPCs) transplantation has been recognized in recent years as an effective strategy for the treatment of ischemic stroke. Several preclinical studies have demonstrated the feasibility, safety, and efficacy of NSPCs therapy.

Methods: We conducted a systematic review of the published literature in Pubmed reporting the use of NSPCs in preclinical studies between 2010 and 2021. Based on the articles reporting data, the key factors affecting efficacy were listed.

Results: A total of 71 preclinical studies, including 91 treatment arms, were identified. The results showed that several factors could influence the outcomes of NSPCs transplantation, including the type of donor cells, cell dose, time of administration after stroke, delivery route, and anesthetic. Treatment outcomes were measured by infarct volume, behavioral tests, and molecular and cellular level results.

Conclusion: Most of the preclinical studies reported statistically significant effects and very few adverse reactions. Transplantation of NSPCs for ischemic stroke still needs to be optimized for several key factors. A standardized treatment outcome assessment could ease the translation of evidence in clinical settings.

Keywords: Neural stem cells, transplantation, ischemic stroke, treatment outcome, animal experimentation, safety.

Graphical Abstract
[1]
Guzik A, Bushnell C. Continuum (Minneap Minn) 2017; 23(1, Cerebrovascular Disease): 15-39.
[http://dx.doi.org/10.1212/con.0000000000000416] [PMID: 28157742]
[2]
Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci 2017; 38(7): 1167-86.
[http://dx.doi.org/10.1007/s10072-017-2938-1] [PMID: 28417216]
[3]
Zhang XL, Zhang XG, Huang YR, et al. Stem cell-based therapy for experimental ischemic stroke: A preclinical systematic review. Front Cell Neurosci 2021; 15: 628908.
[http://dx.doi.org/10.3389/fncel.2021.628908] [PMID: 33935650]
[4]
Liu H, Reiter S, Zhou X, et al. Insight into the mechanisms and the challenges on stem cell-based therapies for cerebral ischemic stroke. Front Cell Neurosci 2021; 15: 637210.
[http://dx.doi.org/10.3389/fncel.2021.637210] [PMID: 33732111]
[5]
Borlongan CV. Concise review: Stem cell therapy for stroke patients: Are we there yet? Stem Cells Transl Med 2019; 8(9): 983-8.
[http://dx.doi.org/10.1002/sctm.19-0076] [PMID: 31099181]
[6]
Sinden JD, Vishnubhatla I, Muir KW. Prospects for stem cell derived therapy in stroke. Prog Brain Res. 2012; 201: pp. 119-67.
[http://dx.doi.org/10.1016/B978-0-444-59544-7.00007-X] [PMID: 23186713]
[7]
Grégoire CA, Goldenstein BL, Floriddia EM, Barnabé-Heider F, Fernandes KJ. Endogenous neural stem cell responses to stroke and spinal cord injury. Glia 2015; 63(8): 1469-82.
[http://dx.doi.org/10.1002/glia.22851] [PMID: 25921491]
[8]
Gritti A, Bonfanti L, Doetsch F, et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 2002; 22(2): 437-45.
[http://dx.doi.org/10.1523/JNEUROSCI.22-02-00437.2002] [PMID: 11784788]
[9]
Obernier K, Alvarez-Buylla A. Neural stem cells: Origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146(4): dev156059.
[http://dx.doi.org/10.1242/dev.156059] [PMID: 30777863]
[10]
Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 2003; 13(1): 127-32.
[http://dx.doi.org/10.1016/S0959-4388(03)00017-5] [PMID: 12593991]
[11]
Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 2017; 8(10): e3108.
[http://dx.doi.org/10.1038/cddis.2017.504] [PMID: 29022921]
[12]
Baker EW, Kinder HA, West FD. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav 2019; 9(3): e01214.
[http://dx.doi.org/10.1002/brb3.1214] [PMID: 30747485]
[13]
Zhang S, Lachance BB, Moiz B, Jia X. Optimizing stem cell therapy after ischemic brain injury. J Stroke 2020; 22(3): 286-305.
[http://dx.doi.org/10.5853/jos.2019.03048] [PMID: 33053945]
[14]
Zhang GL, Zhu ZH, Wang YZ. Neural stem cell transplantation therapy for brain ischemic stroke: Review and perspectives. World J Stem Cells 2019; 11(10): 817-30.
[http://dx.doi.org/10.4252/wjsc.v11.i10.817] [PMID: 31692854]
[15]
Fisher M, Feuerstein G, Howells DW, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009; 40(6): 2244-50.
[http://dx.doi.org/10.1161/STROKEAHA.108.541128] [PMID: 19246690]
[16]
Guan Y, Zou H, Chen X, et al. Ischemia, immunosuppression, and SSEA-1-negative cells all contribute to tumors resulting from mouse embryonic stem cell-derived neural progenitor transplantation. J Neurosci Res 2014; 92(1): 74-85.
[http://dx.doi.org/10.1002/jnr.23292] [PMID: 24123213]
[17]
Fujimoto M, Hayashi H, Takagi Y, et al. Transplantation of telencephalic neural progenitors induced from embryonic stem cells into subacute phase of focal cerebral ischemia. Lab Invest 2012; 92(4): 522-31.
[http://dx.doi.org/10.1038/labinvest.2012.1] [PMID: 22330341]
[18]
Tanaka Y, Imai H, Konno K, et al. Experimental model of lacunar infarction in the gyrencephalic brain of the miniature pig: Neurological assessment and histological, immunohistochemical, and physiological evaluation of dynamic corticospinal tract deformation. Stroke 2008; 39(1): 205-12.
[http://dx.doi.org/10.1161/STROKEAHA.107.489906] [PMID: 18048856]
[19]
Lau VW, Platt SR, Grace HE, Baker EW, West FD. Human iNPC therapy leads to improvement in functional neurologic outcomes in a pig ischemic stroke model. Brain Behav 2018; 8(5): e00972.
[http://dx.doi.org/10.1002/brb3.972] [PMID: 29761021]
[20]
Baker EW, Platt SR, Lau VW, et al. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci Rep 2017; 7(1): 10075.
[http://dx.doi.org/10.1038/s41598-017-10406-x] [PMID: 28855627]
[21]
Namestnikova DD, Gubskiy IL, Revkova VA, et al. Intra-arterial stem cell transplantation in experimental stroke in rats: Real-time MR visualization of transplanted cells starting with their first pass through the brain with regard to the therapeutic action. Front Neurosci 2021; 15: 641970.
[http://dx.doi.org/10.3389/fnins.2021.641970] [PMID: 33737862]
[22]
Vonderwalde I, Azimi A, Rolvink G, Ahlfors JE, Shoichet MS, Morshead CM. Transplantation of directly reprogrammed human neural precursor cells following stroke promotes synaptogenesis and functional recovery. Transl Stroke Res 2020; 11(1): 93-107.
[http://dx.doi.org/10.1007/s12975-019-0691-x] [PMID: 30747366]
[23]
Sakata H, Niizuma K, Yoshioka H, et al. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 2012; 32(10): 3462-73.
[http://dx.doi.org/10.1523/JNEUROSCI.5686-11.2012] [PMID: 22399769]
[24]
Ould-Brahim F, Sarma SN, Syal C, et al. Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. Stem Cells Dev 2018; 27(16): 1085-96.
[http://dx.doi.org/10.1089/scd.2018.0055] [PMID: 29893190]
[25]
Hosseini SM, Ziaee SM, Haider KH, Karimi A, Tabeshmehr P, Abbasi Z. Preconditioned neurons with NaB and nicorandil, a favorable source for stroke cell therapy. J Cell Biochem 2018; 119(12): 10301-13.
[http://dx.doi.org/10.1002/jcb.27372] [PMID: 30145846]
[26]
Sakata H, Narasimhan P, Niizuma K, Maier CM, Wakai T, Chan PH. Interleukin 6-preconditioned neural stem cells reduce ischaemic injury in stroke mice. Brain 2012; 135(Pt 11): 3298-310.
[http://dx.doi.org/10.1093/brain/aws259] [PMID: 23169920]
[27]
Zhang T, Yang X, Liu T, et al. Adjudin-preconditioned neural stem cells enhance neuroprotection after ischemia reperfusion in mice. Stem Cell Res Ther 2017; 8(1): 248.
[http://dx.doi.org/10.1186/s13287-017-0677-0] [PMID: 29115993]
[28]
Kim J, Shin K, Cha Y, et al. Neuroprotective effects of human neural stem cells over-expressing choline acetyltransferase in a middle cerebral artery occlusion model. J Chem Neuroanat 2020; 103: 101730.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101730] [PMID: 31837389]
[29]
Tian L, Zhu W, Liu Y, et al. Neural stem cells transfected with leukemia inhibitory factor promote neuroprotection in a rat model of cerebral ischemia. Neurosci Bull 2019; 35(5): 901-8.
[http://dx.doi.org/10.1007/s12264-019-00405-5] [PMID: 31218515]
[30]
Xu P, Shi X, Zhang X, et al. Overexpression of BRCA1 in Neural Stem Cells Enhances Cell Survival and Functional Recovery after Transplantation into Experimental Ischemic Stroke. Oxid Med Cell Longev 2019; 2019: 8739730.
[http://dx.doi.org/10.1155/2019/8739730] [PMID: 31073355]
[31]
Jiang XC, Xiang JJ, Wu HH, et al. Neural Stem cells transfected with reactive oxygen species-responsive polyplexes for effective treatment of ischemic stroke. Adv Mater 2019; 31(10): e1807591.
[http://dx.doi.org/10.1002/adma.201807591] [PMID: 30633395]
[32]
Chang DJ, Lee N, Choi C, et al. Therapeutic effect of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) in a rodent model of middle cerebral artery occlusion. Cell Transplant 2013; 22(8): 1441-52.
[http://dx.doi.org/10.3727/096368912X657323] [PMID: 23044072]
[33]
Mochizuki N, Moriyama Y, Takagi N, Takeo S, Tanonaka K. Intravenous injection of neural progenitor cells improves cerebral ischemia-induced learning dysfunction. Biol Pharm Bull 2011; 34(2): 260-5.
[http://dx.doi.org/10.1248/bpb.34.260] [PMID: 21415538]
[34]
Doeppner TR, Ewert TA, Tönges L, et al. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: Therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells 2012; 30(6): 1297-310.
[http://dx.doi.org/10.1002/stem.1098] [PMID: 22593021]
[35]
Doeppner TR, El Aanbouri M, Dietz GP, Weise J, Schwarting S, Bähr M. Transplantation of TAT-Bcl-xL-transduced neural precursor cells: Long-term neuroprotection after stroke. Neurobiol Dis 2010; 40(1): 265-76.
[http://dx.doi.org/10.1016/j.nbd.2010.05.033] [PMID: 20554038]
[36]
Chen L, Zhang G, Gu Y, Guo X. Meta-analysis and systematic review of neural stem cells therapy for experimental ischemia stroke in preclinical studies. Sci Rep 2016; 6: 32291.
[http://dx.doi.org/10.1038/srep32291] [PMID: 27554433]
[37]
Huang H, Qian K, Han X, et al. Intraparenchymal neural stem/progenitor cell transplantation for ischemic stroke animals: A meta-analysis and systematic review. Stem Cells Int 2018; 2018: 4826407.
[http://dx.doi.org/10.1155/2018/4826407] [PMID: 30369951]
[38]
Rikhtegar R, Yousefi M, Dolati S, et al. Stem cell-based cell therapy for neuroprotection in stroke: A review. J Cell Biochem 2019; 120(6): 8849-62.
[http://dx.doi.org/10.1002/jcb.28207] [PMID: 30506720]
[39]
Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics 2019; 9(10): 2910-23.
[http://dx.doi.org/10.7150/thno.30879] [PMID: 31244932]
[40]
Doeppner TR, Kaltwasser B, Teli MK, et al. Post-stroke transplantation of adult subventricular zone derived neural progenitor cells--A comprehensive analysis of cell delivery routes and their underlying mechanisms. Exp Neurol 2015; 273: 45-56.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.023] [PMID: 26253224]
[41]
Sasaki Y, Sasaki M, Kataoka-Sasaki Y, et al. Synergic effects of rehabilitation and intravenous infusion of mesenchymal stem cells after stroke in rats. Phys Ther 2016; 96(11): 1791-8.
[http://dx.doi.org/10.2522/ptj.20150504] [PMID: 27174259]
[42]
Kondori BJ, Asadi MH, Bahadoran H, Yari A, Sarshoori JR. Intra-arterial transplantation of neural stem cells improve functional recovery after transient ischemic stroke in adult rats. Bratisl Lek Listy 2020; 121(1): 8-13.
[http://dx.doi.org/10.4149/BLL_2020_002] [PMID: 31950834]
[43]
Cheng Y, Zhang J, Deng L, et al. Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats. Int J Clin Exp Pathol 2015; 8(3): 2928-36.
[PMID: 26045801]
[44]
Ji G, Liu M, Zhao XF, et al. NF-κB signaling is involved in the effects of intranasally engrafted human neural stem cells on neurofunctional improvements in neonatal rat hypoxic-ischemic encephalopathy. CNS Neurosci Ther 2015; 21(12): 926-35.
[http://dx.doi.org/10.1111/cns.12441] [PMID: 26255634]
[45]
Tajiri N, Quach DM, Kaneko Y, et al. Behavioral and histopathological assessment of adult ischemic rat brains after intracerebral transplantation of NSI-566RSC cell lines. PLoS One 2014; 9(3): e91408.
[http://dx.doi.org/10.1371/journal.pone.0091408] [PMID: 24614895]
[46]
Argibay B, Trekker J, Himmelreich U, et al. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Sci Rep 2017; 7: 40758.
[http://dx.doi.org/10.1038/srep40758] [PMID: 28091591]
[47]
Ziaee SM, Tabeshmehr P, Haider KH, et al. Optimization of time for neural stem cells transplantation for brain stroke in rats. Stem Cell Investig 2017; 4: 29.
[http://dx.doi.org/10.21037/sci.2017.03.10] [PMID: 28529944]
[48]
Song M, Kim YJ, Kim YH, Roh J, Kim SU, Yoon BW. Effects of duplicate administration of human neural stem cell after focal cerebral ischemia in the rat. Int J Neurosci 2011; 121(8): 457-61.
[http://dx.doi.org/10.3109/00207454.2011.576792] [PMID: 21574891]
[49]
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157: 49-78.
[http://dx.doi.org/10.1016/j.pneurobio.2017.03.003] [PMID: 28322920]
[50]
Kelly CM, Caldwell MA. Derivation of neural stem cells from the developing and adult human brain. Results Probl Cell Differ 2018; 66: 3-20.
[http://dx.doi.org/10.1007/978-3-319-93485-3_1] [PMID: 30209653]
[51]
Andres RH, Choi R, Steinberg GK, Guzman R. Potential of adult neural stem cells in stroke therapy. Regen Med 2008; 3(6): 893-905.
[http://dx.doi.org/10.2217/17460751.3.6.893] [PMID: 18947311]
[52]
Okita K, Nagata N, Yamanaka S. Immunogenicity of induced pluripotent stem cells. Circ Res 2011; 109(7): 720-1.
[http://dx.doi.org/10.1161/RES.0b013e318232e187]
[53]
Schuster J, Halvardson J, Pilar Lorenzo L, et al. Transcriptome profiling reveals degree of variability in induced pluripotent stem cell lines: Impact for human disease modeling. Cell Reprogram 2015; 17(5): 327-37.
[http://dx.doi.org/10.1089/cell.2015.0009] [PMID: 26348590]
[54]
Jendelova P, Sykova E, Erceg S. Neural stem cells derived from human-induced pluripotent stem cells and their use in models of CNS injury. Results Probl Cell Differ 2018; 66: 89-102.
[http://dx.doi.org/10.1007/978-3-319-93485-3_3] [PMID: 30209655]
[55]
Ahlfors JE, Azimi A, El-Ayoubi R, et al. Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Res Ther 2019; 10(1): 166.
[http://dx.doi.org/10.1186/s13287-019-1255-4] [PMID: 31196173]
[56]
Cui LL, Golubczyk D, Jolkkonen J. Top 3 behavioral tests in cell therapy studies after stroke: Difficult to stop a moving train. Stroke 2017; 48(11): 3165-7.
[http://dx.doi.org/10.1161/STROKEAHA.117.018950] [PMID: 28931616]
[57]
Zhang L, Schallert T, Zhang ZG, et al. A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods 2002; 117(2): 207-14.
[http://dx.doi.org/10.1016/S0165-0270(02)00114-0] [PMID: 12100987]
[58]
Balkaya MG, Trueman RC, Boltze J, Corbett D, Jolkkonen J. Behavioral outcome measures to improve experimental stroke research. Behav Brain Res 2018; 352: 161-71.
[http://dx.doi.org/10.1016/j.bbr.2017.07.039] [PMID: 28760700]
[59]
Bouët V, Freret T, Toutain J, Divoux D, Boulouard M, Schumann-Bard P. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol 2007; 203(2): 555-67.
[http://dx.doi.org/10.1016/j.expneurol.2006.09.006] [PMID: 17067578]
[60]
Schaar KL, Brenneman MM, Savitz SI. Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2010; 2(1): 13.
[http://dx.doi.org/10.1186/2040-7378-2-13] [PMID: 20642841]
[61]
Othman FA, Tan SC. Preconditioning strategies to enhance neural stem cell-based therapy for ischemic stroke. Brain Sci 2020; 10(11): E893.
[http://dx.doi.org/10.3390/brainsci10110893] [PMID: 33238363]
[62]
Kalladka D, Sinden J, Pollock K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet 2016; 388(10046): 787-96.
[http://dx.doi.org/10.1016/S0140-6736(16)30513-X] [PMID: 27497862]
[63]
Zhang G, Li Y, Reuss JL, et al. Stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke. Stem Cells Transl Med 2019; 8(10): 999-1007.
[http://dx.doi.org/10.1002/sctm.18-0220] [PMID: 31241246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy