Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Preparation and Characterization of Stattic-Loaded Albumin Nanoparticles for Antimetastatic Cancer Treatment

Author(s): Yee Chu Kwa, Theebaa Anasamy, Yiing Yee Foo, Bey Fen Leo, Ivy Chung, Lik Voon Kiew and Lip Yong Chung*

Volume 12, Issue 1, 2022

Published on: 19 April, 2022

Page: [74 - 83] Pages: 10

DOI: 10.2174/2210303112666220330115110

Price: $65

conference banner
Abstract

Background: Stattic offers a unique inhibitory effect on the STAT3 signaling pathway, a crucial mechanism in the progression of metastatic cancer. However, the development of Stattic has been impeded by its hydrophobicity and lack of specificity. To overcome these limitations, encapsulation of Stattic with polymeric micelles was previously attempted, which led to a significant increase in the potency of Stattic on breast cancer cell lines. The presence of albumin was believed to contribute to such enhancement, as the protein corona layer formation helps retain the micellar structure before eventual uptake by the cells. Moreover, a previous study had reported the unique affinity of Stattic towards albumin molecule.

Objective: This study aimed to explore the integration of Stattic in albumin-based nanoparticles and to assess the in vitro effects.

Methods: Albumin/Stattic nanoparticles were prepared by crosslinking with glutaraldehyde.

Results: The yielded nanoparticles were 150.0 ± 6.6 nm in size, with ~53% entrapment efficiency. The cumulative release of Stattic in a tumoric acidic environment (pH 5.3; 59%) was 2.6-fold more than neutral environment (pH 7.4; 23%). In blood plasma, 7% cumulative release was observed. The mathematical modeling of the release kinetics revealed that the albumin/Stattic nanoparticles in phosphate buffer saline and plasma followed Korsmeyer-Peppas and Higuchi models, respectively. Among the two cell lines tested, metastatic MDA-MB-231 cells were more sensitive to entrapment of Stattic with albumin nanoparticles, as the IC50 value decreased by 2.5-fold compared to free Stattic.

Conclusion: This study reports the formation of low immunogenic and cost-efficient albumin nanoparticles to improve the delivery of Stattic.

Keywords: Nanocarrier, drug delivery, metastasis, bovine serum albumin, stattic, breast cancer.

« Previous
Graphical Abstract
[1]
Hsieh, F.C.; Cheng, G.; Lin, J. Evaluation of potential Stat3-regulated genes in human breast cancer. Biochem. Biophys. Res. Commun., 2005, 335(2), 292-299.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.075] [PMID: 16081048]
[2]
Kamran, M.Z.; Patil, P.; Gude, R.P. Role of STAT3 in cancer metastasis and translational advances. BioMed Res. Int., 2013, 2013, 421821.
[http://dx.doi.org/10.1155/2013/421821] [PMID: 24199193]
[3]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[4]
Schust, J.; Sperl, B.; Hollis, A.; Mayer, T.U.; Berg, T. Stattic: A small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol., 2006, 13(11), 1235-1242.
[http://dx.doi.org/10.1016/j.chembiol.2006.09.018] [PMID: 17114005]
[5]
Pan, Y.; Zhou, F.; Zhang, R.; Claret, F.X. Stat3 inhibitor stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS One, 2013, 8(1), e54565.
[http://dx.doi.org/10.1371/journal.pone.0054565] [PMID: 23382914]
[6]
Liu, Y.; Liu, A.; Xu, Z.; Yu, W.; Wang, H.; Li, C.; Lin, J. XZH-5 inhibits STAT3 phosphorylation and causes apoptosis in human hepatocellular carcinoma cells. Apoptosis, 2011, 16(5), 502-510.
[http://dx.doi.org/10.1007/s10495-011-0578-0] [PMID: 21311975]
[7]
Hindupur, S.V.; Schmid, S.C.; Koch, J.A.; Youssef, A.; Baur, E.M.; Wang, D.; Horn, T.; Slotta-Huspenina, J.; Gschwend, J.E.; Holm, P.S.; Nawroth, R. STAT3/5 inhibitors suppress proliferation in bladder cancer and enhance oncolytic adenovirus therapy. Int. J. Mol. Sci., 2020, 21(3), 1106.
[http://dx.doi.org/10.3390/ijms21031106] [PMID: 32046095]
[8]
Yue, P.; Turkson, J. Targeting STAT3 in cancer: How successful are we? Expert Opin. Investig. Drugs, 2009, 18(1), 45-56.
[http://dx.doi.org/10.1517/13543780802565791] [PMID: 19053881]
[9]
Chiba, T. STAT3 inhibitors for cancer therapy - the rationale and remained problems. EC Canc., 2016, S1, S1-S8.
[10]
Kwa, Y.C.; Tan, Y.F.; Foo, Y.Y.; Leo, B.F.; Chung, I.; Kiew, L.V.; Imae, T.; Yusa, S.I.; Chung, L.Y. Improved delivery and antimetastatic effects of Stattic by self-assembled amphiphilic pendant-dendron copolymer micelles in breast cancer cell lines. J. Drug Deliv. Sci. Technol., 2020, 59, 101905.
[http://dx.doi.org/10.1016/j.jddst.2020.101905]
[11]
Affandi, I.S.M.; Lee, W.Q.; Feroz, S.R.; Mohamad, S.B.; Tayyab, S. Interaction of stattic, a STAT3 inhibitor with human serum albumin: Spectroscopic and computational study. J. Biomol. Struct. Dyn., 2017, 35(16), 3581-3590.
[http://dx.doi.org/10.1080/07391102.2016.1264887] [PMID: 27892818]
[12]
Hoogenboezem, E.N.; Duvall, C.L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev., 2018, 130, 73-89.
[http://dx.doi.org/10.1016/j.addr.2018.07.011] [PMID: 30012492]
[13]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[14]
Sleep, D.; Cameron, J.; Evans, L.R. Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta, 2013, 1830(12), 5526-5534.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.023] [PMID: 23639804]
[15]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[16]
Stehle, G.; Sinn, H.; Wunder, A.; Schrenk, H.H.; Stewart, J.C.; Hartung, G.; Maier-Borst, W.; Heene, D.L. Plasma protein (albumin) catabolism by the tumor itself--implications for tumor metabolism and the genesis of cachexia. Crit. Rev. Oncol. Hematol., 1997, 26(2), 77-100.
[http://dx.doi.org/10.1016/S1040-8428(97)00015-2] [PMID: 9298326]
[17]
Jithan, A.; Madhavi, K.; Madhavi, M.; Prabhakar, K. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int. J. Pharm. Investig., 2011, 1(2), 119-125.
[http://dx.doi.org/10.4103/2230-973X.82432] [PMID: 23071931]
[18]
Motevalli, S.M.; Eltahan, A.S.; Liu, L.; Magrini, A.; Rosato, N.; Guo, W.; Bottini, M.; Liang, X.J. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys. Rep., 2019, 5(1), 19-30.
[http://dx.doi.org/10.1007/s41048-018-0079-6]
[19]
Niknejad, H.; Mahmoudzadeh, R. Comparison of different crosslinking methods for preparation of docetaxel-loaded albumin nanoparticles. Iran. J. Pharm. Res., 2015, 14(2), 385-394.
[PMID: 25901145]
[20]
Aliabadi, H.M.; Elhasi, S.; Mahmud, A.; Gulamhusein, R.; Mahdipoor, P.; Lavasanifar, A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: The effect of solvent composition on micellar properties and drug loading. Int. J. Pharm., 2007, 329(1-2), 158-165.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.018] [PMID: 17008034]
[21]
Sahu, A.; Kasoju, N.; Goswami, P.; Bora, U. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J. Biomater. Appl., 2011, 25(6), 619-639.
[http://dx.doi.org/10.1177/0885328209357110] [PMID: 20207782]
[22]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm., 2013, 453(1), 12-24.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.044] [PMID: 23618956]
[23]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm., 2008, 364(2), 328-343.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.004] [PMID: 18822362]
[24]
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 1987, 5(1), 23-36.
[http://dx.doi.org/10.1016/0168-3659(87)90034-4]
[25]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[26]
Bronze-Uhle, E.S.; Costa, B.C.; Ximenes, V.F.; Lisboa-Filho, P.N. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol. Sci. Appl., 2016, 10, 11-21.
[http://dx.doi.org/10.2147/NSA.S117018] [PMID: 28096662]
[27]
Gong, Z.; Liu, Z.; Dong, X.; Ding, Y.H.; Dong, M.Q.; Tang, C. Protocol for analyzing protein ensemble structures from chemical cross-links using DynaXL. Biophys. Rep., 2017, 3(4), 100-108.
[http://dx.doi.org/10.1007/s41048-017-0044-9] [PMID: 29238747]
[28]
Das, R.P.; Gandhi, V.V.; Singh, B.G.; Kunwar, A.; Kumar, N.N.; Priyadarsini, K.I. Preparation of albumin nanoparticles: Optimum size for cellular uptake of entrapped drug (curcumin). Colloids Surf. A Physicochem. Eng. Asp., 2019, 567, 86-95.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.043]
[29]
Merodio, M.; Arnedo, A.; Renedo, M.J.; Irache, J.M. Ganciclovir-loaded albumin nanoparticles: Characterization and in vitro release properties. Eur. J. Pharm. Sci., 2001, 12(3), 251-259.
[http://dx.doi.org/10.1016/S0928-0987(00)00169-X] [PMID: 11113644]
[30]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[31]
Tan, Y.L.; Ho, H.K. Navigating albumin-based nanoparticles through various drug delivery routes. Drug Discov. Today, 2018, 23(5), 1108-1114.
[http://dx.doi.org/10.1016/j.drudis.2018.01.051] [PMID: 29408437]
[32]
Rahaiee, S.; Shojaosadati, S.A.; Hashemi, M.; Moini, S.; Razavi, S.H. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Int. J. Biol. Macromol., 2015, 79, 423-432.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.041] [PMID: 25934104]
[33]
Gong, G.; Pan, Q.; Wang, K.; Wu, R.; Sun, Y.; Lu, Y. Curcumin-incorporated albumin nanoparticles and its tumor image. Nanotechnology, 2015, 26(4), 045603.
[http://dx.doi.org/10.1088/0957-4484/26/4/045603] [PMID: 25558927]
[34]
Li, Y.; Yang, G.; Mei, Z. Spectroscopic and dynamic light scattering studies of the interaction between pterodontic acid and bovine serum albumin. Acta Pharm. Sin. B, 2012, 2(1), 53-59.
[http://dx.doi.org/10.1016/j.apsb.2011.12.001]
[35]
Liu, J.; He, Y.; Liu, D.; He, Y.; Tang, Z.; Lou, H.; Huo, Y.; Cao, X. Characterizing the binding interaction of astilbin with bovine serum albumin: A spectroscopic study in combination with molecular docking technology. RSC Advances, 2018, 8(13), 7280-7286.
[http://dx.doi.org/10.1039/C7RA13272G]
[36]
Abdelhameed, A.S.; Alanazi, A.M.; Bakheit, A.H.; Darwish, H.W.; Ghabbour, H.A.; Darwish, I.A. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 171, 174-182.
[http://dx.doi.org/10.1016/j.saa.2016.08.005] [PMID: 27526341]
[37]
Tian, Z.Y.; Song, L.N.; Zhao, Y.; Zang, F.L.; Zhao, Z.H.; Chen, N.H.; Xu, X.J.; Wang, C.J. Spectroscopic study on the interaction between naphthalimide-polyamine conjugates and bovine serum albumin (BSA). Molecules, 2015, 20(9), 16491-16523.
[http://dx.doi.org/10.3390/molecules200916491] [PMID: 26378511]
[38]
Pathak, M.; Mishra, R.; Agrawala, P.; Ojha, H.; Singh, B.; Singh, A.; Kukreti, S. Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies. Thermochim. Acta, 2016, 633, 140-148.
[http://dx.doi.org/10.1016/j.tca.2016.04.006]
[39]
Phan, H.T.M.; Bartelt-Hunt, S.; Rodenhausen, K.B.; Schubert, M.; Bartz, J.C. Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PLoS One, 2015, 10(10), e0141282.
[http://dx.doi.org/10.1371/journal.pone.0141282] [PMID: 26505481]
[40]
Groenewegen, W.; Lapp, A.; Egelhaaf, S.U.; van der Maarel, J.R.C. Counterion distribution in the coronal layer of polyelectrolyte diblock copolymer micelles. Macromolecules, 2000, 33(11), 4080-4086.
[http://dx.doi.org/10.1021/ma000096h]
[41]
Chockalingam, R.; Natarajan, U. Structure and solvation thermodynamics of asymmetric poly (acrylic acid)-b-polystyrene polyelectrolyte block copolymer micelle in water: Effect of charge density and chemical composition. Polymer (Guildf.), 2018, 158, 103-119.
[http://dx.doi.org/10.1016/j.polymer.2018.10.042]
[42]
Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm., 1983, 15(1), 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]
[43]
Kayani, Z.; Firuzi, O.; Bordbar, A.K. Doughnut-shaped bovine serum albumin nanoparticles loaded with doxorubicin for overcoming multidrug-resistant in cancer cells. Int. J. Biol. Macromol., 2018, 107(Pt B), 1835-1843.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.041] [PMID: 29030194]
[44]
de Oliveira, J.K.; Ronik, D.F.R.; Ascari, J.; Mainardes, R.M.; Khalil, N.M. Nanoencapsulation of apocynin in bovine serum albumin nanoparticles: Physicochemical characterization. Nanosci. Nanotechnol. Asia, 2018, 8(1), 90-99.
[http://dx.doi.org/10.2174/2210681206666160822112408]
[45]
Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release III. Coupling of diffusion and relaxation. Int. J. Pharm., 1989, 57(2), 169-172.
[http://dx.doi.org/10.1016/0378-5173(89)90306-2]
[46]
Fick, A. Ueber diffusion (On diffusion). Ann. Phys., 1855, 170(1), 59-86.
[http://dx.doi.org/10.1002/andp.18551700105]
[47]
Siepmann, J.; Peppas, N.A. Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm., 2011, 418(1), 6-12.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.051] [PMID: 21458553]
[48]
Sharifi, S.; Caracciolo, G.; Mahmoudi, M. Biomolecular corona affects controlled release of drug payloads from nanocarriers. Trends Pharmacol. Sci., 2020, 41(9), 641-652.
[http://dx.doi.org/10.1016/j.tips.2020.06.011] [PMID: 32713606]
[49]
Yang, W.; Wang, L.; Mettenbrink, E.M.; DeAngelis, P.L.; Wilhelm, S. Nanoparticle Toxicology. Annu. Rev. Pharmacol. Toxicol., 2021, 61(1), 269-289.
[http://dx.doi.org/10.1146/annurev-pharmtox-032320-110338] [PMID: 32841092]
[50]
Liu, W.M.; Oakley, P.R.; Joel, S.P. Exposure to low concentrations of etoposide reduces the apoptotic capability of leukaemic cell lines. Leukemia, 2002, 16(9), 1705-1712.
[http://dx.doi.org/10.1038/sj.leu.2402621] [PMID: 12200685]
[51]
Pérez-Velázquez, J.; Rejniak, K.A. Drug-induced resistance in micrometastases: Analysis of spatio-temporal cell lineages. Front. Physiol., 2020, 11, 319.
[http://dx.doi.org/10.3389/fphys.2020.00319] [PMID: 32362836]
[52]
Itaya, M.; Miyazawa, T.; Zingg, J.M.; Eitsuka, T.; Azzi, A.; Meydani, M.; Miyazawa, T.; Nakagawa, K. The differential cellular uptake of curcuminoids in vitro depends dominantly on albumin interaction. Phytomedicine, 2019, 59, 152902.
[http://dx.doi.org/10.1016/j.phymed.2019.152902]
[53]
Kulikov, P.P.; Luss, A.L.; Nelemans, L.C.; Shtilman, M.I.; Mezhuev, Y.O.; Kuznetsov, I.A.; Sizova, O.Y.; Christiansen, G.; Pennisi, C.P.; Gurevich, L. Synthesis, self-assembly and in vitro cellular uptake kinetics of nanosized drug carriers based on aggregates of amphiphilic oligomers of n-vinyl-2-pyrrolidone. Materials (Basel), 2021, 14(20), 5977.
[http://dx.doi.org/10.3390/ma14205977] [PMID: 34683572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy