Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

General Review Article

Conductivity Study on Proton-Conducting Nanocomposite Plasticized Polymer Electrolytes: A Review

Author(s): Shuchi Sharma, Dinesh Pathak, Naresh Dhiman, Rajiv Kumar*, Kamlesh Kumar Prashar, Manoj Kahol, Narinder Arora and Viney Sharma

Volume 15, Issue 3, 2022

Published on: 14 June, 2022

Page: [229 - 250] Pages: 22

DOI: 10.2174/2666145415666220330104918

Price: $65

Abstract

This paper reviews proton-conducting polymer electrolytes comprising different polymers, salts, and acids. The ionic conductivity of plasticized polymer electrolytes has been found to increase with the addition of plasticizers due to the dissociation of ion aggregates or undissociated salt/acid present in the electrolytes, i.e., σ (plasticized polymer electrolytes) > σ (unplasticized polymer electrolytes). Proton-conducting nonaqueous nanocomposite plasticized polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), polymethylmethacrylate (PMMA), polyethylene oxide (PEO) polymers; different ammonium salts and acids as proton conductors; ethylene carbonate (EC), propylene carbonate (PC), dimethylformamide (DMF), dimethylacetamide (DMA), dimethyl carbonate (DMC), diethyl carbonate (DEC) as plasticizers; fumed silica and alumina as nano-fillers have been discussed in details. Conductivity studies (effect of salt/acid, effect of plasticizers, effect of nano-fillers, and effect of temperature), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry/thermal gravimetric analysis (DSC/TGA) studies for these electrolytes have been discussed and reported in the paper. Nanocomposite plasticized polymer electrolytes showed high ionic conductivity (in the order of 10-1 to 10-2 S/cm) at room temperature along with good thermal and mechanical stability due to the simultaneous addition of both plasticizers and nano-fillers. These nanocomposite polymer electrolytes are the best candidates for use in various electrochemical devices like solid-state batteries, fuel cells, supercapacitors, sensors, separators, and other electrochromic devices.

Keywords: Ionic conductivity, nanoparticles, thermal properties, composite materials, spectroscopy, supercapacitors.

Graphical Abstract
[1]
Lu W, Fadeev AG, Qi B, et al. Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 2002; 297(5583): 983-7.
[http://dx.doi.org/10.1126/science.1072651] [PMID: 12098704]
[2]
López MSP, Mecerreyes D, López-Cabarcos E, López-Ruiz B. Amperometric glucose biosensor based on polymerized ionic liquid microparticles. Biosens Bioelectron 2006; 21(12): 2320-8.
[http://dx.doi.org/10.1016/j.bios.2006.02.019] [PMID: 16616485]
[3]
Pozo-Gonzalo C, Marcilla R, Salsamendi M, et al. PEDO. T. Poly(1-vinyl-3-ethylirnidazolium) dispersions as alternative materials for optoelectronic devices. J Polym Sci A Polym Chem 2008; 46(9): 3150-4.
[http://dx.doi.org/10.1002/pola.22646]
[4]
Kim T, Suh M, Kwon SJ, et al. Poly(3,4-ethylenedi-oxythiophene)derived from poly(ionic liquid) for use as holeinjection material in organic light-emitting diodes. Macromol Rapid Commun 2009; 30(17): 1477-82.
[http://dx.doi.org/10.1002/marc.200900234] [PMID: 21638408]
[5]
Pont AL, Marcilla R, De Meatza I, Grande H, Mecerreyes D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electro-chemically stable polymer electrolytes. J Power Sources 2009; 188(2): 558-63.
[http://dx.doi.org/10.1016/j.jpowsour.2008.11.115]
[6]
Wu B, Hu D, Kuang Y, Liu B, Zhang X, Chen J. Functionalization of carbon nanotubes by an ionic-liquid polymer: Dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Int Ed Engl 2009; 48(26): 4751-4.
[http://dx.doi.org/10.1002/anie.200900899] [PMID: 19452506]
[7]
Appetecchi GB, Kim GT, Montanina M, et al. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources 2010; 195(11): 3668-75.
[http://dx.doi.org/10.1016/j.jpowsour.2009.11.146]
[8]
Kwon SJ, Kim TY, Lee BS, Lee TH, Kimn JE, Suh KS. Elastomeric conducting polymer nano-composites derived from ionic liquid polymer stabilized poly(3,4-ethylenedioxythiophene). Synth Met 2010; 160(9-10): 1092-6.
[http://dx.doi.org/10.1016/j.synthmet.2010.02.032]
[9]
Zhang Q, Lu X, Qiao Y, et al. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a polymeric ionic liquid film. Electroanalysis 2010; 22(9): 1000-4.
[http://dx.doi.org/10.1002/elan.200900430]
[10]
Prasad K, Mine S, Kaneko Y, Kadodawa J. Preparation of cellulose based ionic porous material compatibilized with polymeric ionic liquid. Polym Bull 2010; 64(4): 341-9.
[http://dx.doi.org/10.1007/s00289-009-0144-x]
[11]
Prasad K, Kadokawa J. Preparation of composite materials composed of i-carrageenan and polymeric ionic liquids. Polym Compos 2010; 31: 799-806.
[12]
Zhang Q, Wu S, Zhang L, et al. Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron 2011; 26(5): 2632-7.
[http://dx.doi.org/10.1016/j.bios.2010.11.024] [PMID: 21159504]
[13]
Mecerreyes D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog Polym Sci 2011; 36(12): 1629-48.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.05.007]
[14]
Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer (Guildf) 1973; 14(11): 589-90.
[http://dx.doi.org/10.1016/0032-3861(73)90146-8]
[15]
Wright PV. An anomalous transition with a lower activation energy for dc electrical conduction above the glass transition temperature. J Polym Sci, Polym Phys Ed 1976; 14(5): 955-7.
[http://dx.doi.org/10.1002/pol.1976.180140516]
[16]
Armand MB, Chabagno JM, Duclot MJ. Extended abstract on second international meeting on solid electrolytes. St. Andrews, Scotland 1978.
[17]
Armand MB, Chabagno JM, Duclot MJ. Fast Ion Transport in Solids. New York 1979.
[18]
Sorenson PR, Jacobson T. Conductivity, charge transfer and transport number-an ac investigation of the polymer electrolyte LiSCN-poly(ethyleneoxide). Electrochim Acta 1982; 27(12): 1671-5.
[http://dx.doi.org/10.1016/0013-4686(82)80162-X]
[19]
Retman EA, Kaplan ML, Cava RJ. Lithium ion-poly (ethylene oxide) complexes. I. Effect of anion on conductivity. Solid State Ion 1985; 17(1): 67-73.
[http://dx.doi.org/10.1016/0167-2738(85)90124-9]
[20]
Lee YL, Crist B. Phase behavior and conductivity in poly(ethylene oxide)-sodium thiocyanate systems. J Appl Phys 1986; 60(8): 2683-9.
[http://dx.doi.org/10.1063/1.337781]
[21]
Ratner MA. Polymer Electrolyte Reviews-I 173. New York: Elsevier Applied Science 1987.
[22]
Gauthier M, Belanger A, Kapfer B, Vassort G. Polymer Electrolyte Reviews-II. p.61, MacCallum JR, Vincent CA. London: Elsevier 1989; p. 61.
[23]
Abraham KM, Alamgir M. Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity. J Electrochem Soc 1990; 137(5): 1657-8.
[http://dx.doi.org/10.1149/1.2086749]
[24]
Vincent CA. Electrochemical Science and Technology of Polymer-II. New York: Elsevier 1990; p. 47.
[25]
Chandra S, Hashmi SA, Saleem M, Agrawal RC. Investigations on poly ethylene oxide-based polymer electrolyte complexed with AgNO3. Solid State Ion 1993; 67(1-2): 1-7.
[http://dx.doi.org/10.1016/0167-2738(93)90301-I]
[26]
Alamgir M, Abraham KM. Li-ion conductive electrolytes based on poly(vinyl chloride). J Electrochem Soc 1993; 140(6): L96-7.
[http://dx.doi.org/10.1149/1.2221654]
[27]
Appetecchi GB, Croce F, Scrosati B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 1995; 40(8): 991-7.
[http://dx.doi.org/10.1016/0013-4686(94)00345-2]
[28]
Furukawa T, Imura M, Yuruzume H. Broad-band conductive spectra of polypropylene oxide complexed with LiClO4. Jpn J Appl Phys 1997; 36(Part 1, No. 3A): 1119- 25.
[http://dx.doi.org/10.1143/JJAP.36.1119]
[29]
Cowie JMG. An ion conducted a tour through some polymer electrolytes. Polym Int 1998; 47(1): 20-7.
[http://dx.doi.org/10.1002/(SICI)1097-0126(199809)47:1<20:AID-PI5>3.0.CO;2-E]
[30]
Song JY, Wang YY, Wan CC. Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 1999; 77(2): 183-97.
[http://dx.doi.org/10.1016/S0378-7753(98)00193-1]
[31]
Reddy MJ, Sreekanth T, Rao UVS. Study of the plasticizer effect on a (PEO+ NaYF4) polymer electrolyte and its use in an electro-chemical cell. Solid State Ion 1999; 126(1-2): 55-63.
[http://dx.doi.org/10.1016/S0167-2738(99)00225-8]
[32]
Furukawa T, Yoneya K, Takahashi Y, Ito K, Ohno H. Correlation between ionic and dipolar motions in a single-ion conducting poly-mer P. Electrochim Acta 2000; 45(8-9): 1443-8.
[http://dx.doi.org/10.1016/S0013-4686(99)00357-6]
[33]
Zhou YF, Xie S, Ge XW, Chen CH, Amine KJ. Preparation of rechargeable lithium batteries with poly(methyl methacrylate) based gel polymer electrolyte by in situ γ-ray irradiation-induced polymerization. J Appl Electrochem 2004; 34(11): 1119-25.
[http://dx.doi.org/10.1007/s10800-004-2726-5]
[34]
Di Noto V, Negro E, Lavina S, Vittadello M. Hybrid inorganic-organic polymer electrolytesPolymer Electrolytes - Fundamentals and Applications. Oxford: Woodhead Publishing Limited 2010; p. 219.
[35]
Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: Present past and future. Electrochim Acta 2011; 57: 4-13.
[http://dx.doi.org/10.1016/j.electacta.2011.08.048]
[36]
Muldoon J, Bucur CB, Boaretto N, Gregory T, Di Noto V. Polymers: Opening doors to future batteries. Polym Rev (Phila Pa) 2015; 55(2): 208-46.
[http://dx.doi.org/10.1080/15583724.2015.1011966]
[37]
Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM. A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Devices 2018; 3(1): 1-17.
[38]
Hirankumar G, Mehta N. Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes. Heliyon 2018; 4(12): e00992.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00992] [PMID: 30623123]
[39]
Colomban P, Philippe C, Eds. Proton conductors: Solids, membranes, and gels-materials and devices. Cambridge: Cambridge Univer-sity Press 1992.
[http://dx.doi.org/10.1017/CBO9780511524806]
[40]
Stainer M, Hardy LC, Whitmore DH, Shriver DF. Stoichiometry of formation and conductivity response of amorphous. J Electrochem Soc 1984; 131(4): 784-90.
[http://dx.doi.org/10.1149/1.2115699]
[41]
Chandra S. Handbook of Solid State Batteries and Capacitors. Singapore: World Scientific 1995; p. 579.
[http://dx.doi.org/10.1142/9789812831828_0025]
[42]
Kreuer KD. Proton conductivity: Materials and applications. Chem Mater 1996; 8(3): 610-41.
[http://dx.doi.org/10.1021/cm950192a]
[43]
Wieczorek W, Stevens JR. Proton transport in polyacrylamide based hydrogels doped with H3PO4 or H2SO4. Polymer (Guildf) 1997; 38(9): 2057-65.
[http://dx.doi.org/10.1016/S0032-3861(96)00776-8]
[44]
Ali AMM, Mohamed NS, Arof AK. Polyethylene oxide (PEO)-ammonium sulfate ((NH4)2SO4) complexes and electrochemical cell performance. J Power Sources 1998; 74(1): 135-41.
[http://dx.doi.org/10.1016/S0378-7753(98)00045-7]
[45]
Narayanan SR, Yen SP, Liu L, Greenbaum SG. Anhydrous proton-conducting polymeric electrolytes for fuel cells. J Phys Chem B 2006; 110(9): 3942-8.
[http://dx.doi.org/10.1021/jp054167w] [PMID: 16509680]
[46]
Pratap R, Singh B, Chandra S. Polymeric rechargeable solid-state proton battery. J Power Sources 2006; 161(1): 702-6.
[http://dx.doi.org/10.1016/j.jpowsour.2006.04.020]
[47]
Papke BL, Ratner MA, Shriver DF. Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts. J Phys Chem Solids 1981; 42(6): 493-500.
[http://dx.doi.org/10.1016/0022-3697(81)90030-5]
[48]
Daniel MF, Desbat B, Lassegues JC. Solid state protonic conductors: Complexation of poly(ethylene oxide) or poly(acrylic acid) with NH4HSO4. Solid State Ion 1988; 28-30: 632-6.
[http://dx.doi.org/10.1016/S0167-2738(88)80115-2]
[49]
Daniel MF, Desbat B, Cruege F, Trinquet O, Lassegues JC. Solid state protonic conductors: Poly(ethylene imine) sulfates and phos-phates. Solid State Ion 1988; 28-30: 637-41.
[http://dx.doi.org/10.1016/S0167-2738(88)80116-4]
[50]
Singh RP, Gupta PN, Agrawal SL, Eds., et al. Solid State Ionics. Boston, Pittsburgh: Materials Research Society 1989; p. 361.
[51]
Chandra S, Hashmi SA, Prasad G. Studies on ammonium perchlorate doped polyethylene oxide polymer electrolyte. Solid State Ion 1990; 40-41: 651-4.
[http://dx.doi.org/10.1016/0167-2738(90)90090-E]
[52]
Hashmi SA, Kumar A, Maurya KK, Chandra S. Proton-conducting polymer electrolyte. I. The polyethylene oxide+NH4ClO4 system. J Phys D Appl Phys 1990; 23(10): 1307-14.
[http://dx.doi.org/10.1088/0022-3727/23/10/007]
[53]
Hashmi SA. Effect of thermal treatment on a proton-conducting polymer electrolyte PEO-NH4I. J Mater Sci Lett 1991; 10(19): 1153-5.
[http://dx.doi.org/10.1007/BF00744111]
[54]
Maurya KK, Hashmi SA, Chandra S. Proton conducting polymer electrolytes: Polyethylene oxide +(NH4)2SO4 system. J Phys Soc Jpn 1992; 61: 1709-16.
[http://dx.doi.org/10.1143/JPSJ.61.1709]
[55]
Maurya KK, Shrivastava N, Hashmi SA, Chandra S. Proton conducting polymer electrolyte: II poly ethylene oxide + NH4l system. J Mater Sci 1992; 27(23): 6357-64.
[http://dx.doi.org/10.1007/BF00576285]
[56]
Prusinowska D, Wieczorek W, Wycislik H, Siekierski M, Przyluski J, Soltysiak J. Conductivity and structural studies of PEO-NH4SCN electrolytes. Solid State Ion 1994; 72: 152-9.
[http://dx.doi.org/10.1016/0167-2738(94)90140-6]
[57]
Dabrowska A, Wieczorek W. Conductivity and phase structure of blend-based proton polymeric electrolytes II: Ammonium salts com-plexes. Mater Sci Eng B 1994; 22(2-3): 117-27.
[http://dx.doi.org/10.1016/0921-5107(94)90233-X]
[58]
Albinsson I, Mellander BE, Stevens JR. Ion conductivity, electrical relaxation, and ion association in poly(propylene glycol) complexed with ammonium triflate. Solid State Ion 1994; 72: 177-82.
[http://dx.doi.org/10.1016/0167-2738(94)90144-9]
[59]
Srivastava N, Chandra A, Chandra S. Dense branched growth of (SCN)x and ion transport in the poly(ethyleneoxide) NH4SCN poly-mer electrolyte. Phys Rev B Condens Matter 1995; 52(1): 225-30.
[http://dx.doi.org/10.1103/PhysRevB.52.225] [PMID: 9979595]
[60]
Srivastava N, Chandra S. Ion transport studies in polyethylene succinate: NH4SCN System. Phys Status Solidi, A Appl Res 1997; 163(2): 313-23.
[http://dx.doi.org/10.1002/1521-396X(199710)163:2<313:AID-PSSA313>3.0.CO;2-D]
[61]
Chintapalli S, Zea C, Frech R. Characterization studies on high molecular weight pe o-ammonium triflate complexes. Solid State Ion 1996; 92(3-4): 205-12.
[http://dx.doi.org/10.1016/S0167-2738(96)00473-0]
[62]
Bhattacharya AJ, Tarafdar S, Middya TR. Effective medium theory for ionic conductivity in polycrystalline solid electrolytes. Solid State Ion 1997; 95(3-4): 283-8.
[http://dx.doi.org/10.1016/S0167-2738(96)00569-3]
[63]
Bhattacharyya AJ, Middya TR, Tarafdar S. Ionic conductivity of PEO-NH4ClO4 films by admittance spectroscopy: Correlation with crystallinity and morphology. Phys Rev B Condens Matter 1999; 60(2): 909-15.
[http://dx.doi.org/10.1103/PhysRevB.60.909]
[64]
Reddy DS, Reddy MJ, Subba Rao UV. Proton conductor based on poly(ethylene oxide) complexed with tetra-methyl-ammonium bromide. Mater Sci Eng B 2000; 78(1): 59-62.
[http://dx.doi.org/10.1016/S0921-5107(00)00516-X]
[65]
Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog Polym Sci 2000; 25(10): 1463-502.
[http://dx.doi.org/10.1016/S0079-6700(00)00032-0]
[66]
Lassegues A, Zajder M, Frackowiaka E, Beguin F. Supercapacitor based on activated carbon and polyethylene oxide-KOH-H2O poly-mer electrolyte. Electrochim Acta 2001; 46(18): 2777-80.
[http://dx.doi.org/10.1016/S0013-4686(01)00496-0]
[67]
Srivastava N, Chandra S. Studies on a new proton conducting polymer system: Poly (ethylene succinate)+NH4ClO4. Eur Polym J 2000; 36(2): 421-33.
[http://dx.doi.org/10.1016/S0014-3057(99)00056-7]
[68]
Tanaka R, Yamamoto H, Shona A, Kubo K, Sakurai M. Proton conducting behavior in non-crosslinked and crosslinked polyethyl-enimine with excess phosphoric acid. Electrochim Acta 2000; 45(8-9): 1385-9.
[http://dx.doi.org/10.1016/S0013-4686(99)00347-3]
[69]
Kumar M, Sekhon SS. Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur Polym J 2002; 38(7): 1297-304.
[http://dx.doi.org/10.1016/S0014-3057(01)00310-X]
[70]
Sekhon SS, Kumar M. Solid State Ionics: Trends in the New Millennium. Singapore: World Sci 2002; p. 377.
[http://dx.doi.org/10.1142/9789812776259_0042]
[71]
Kumar M, Sekhon SS. Ionic conductance behaviour of plasticized polymer electrolytes containing different plasticizers. Ionics 2002; 8(3-4): 223-33.
[http://dx.doi.org/10.1007/BF02376072]
[72]
Majid SR, Arof AK. Proton-conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. Physica B 2005; 355(1-4): 78-82.
[http://dx.doi.org/10.1016/j.physb.2004.10.025]
[73]
Selvasekarapandian S, Baskaran R, Hema M. Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc-NH4SCN polymer electrolytes. Physica B 2005; 357(3-4): 412-9.
[http://dx.doi.org/10.1016/j.physb.2004.12.007]
[74]
Selvasekarapandian S, Hirankumar G, Kawamura J, Kuwata N, Hattori T. 1H solid state NMR studies on proton conducting polymer electrolytes. Mater Lett 2005; 59(22): 2741-5.
[http://dx.doi.org/10.1016/j.matlet.2005.04.018]
[75]
Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Angelo PC. Vibrational and impedance spectroscopic study on PVP-NH4SCN based polymer electrolytes. Physica B 2007; 393(1-2): 11-7.
[http://dx.doi.org/10.1016/j.physb.2006.11.021]
[76]
Maitra M, Verma KC, Sinha M, et al. DSC characterization of ion beam modifications in ion conducting PEO-salt polymers. Nucl Instrum Methods Phys Res B 2006; 244(1): 239-42.
[http://dx.doi.org/10.1016/j.nimb.2005.11.071]
[77]
Missan HPS, Chu PP, Sekhon SS. Ion conduction mechanism in non-aqueous polymer electrolytes based on oxalic acid: Effect of plasticizer and polymers. J Power Sources 2006; 158(2): 1472-9.
[http://dx.doi.org/10.1016/j.jpowsour.2005.10.078]
[78]
Ng LS, Mohamad AA. Protonic battery based on a plasticized chitosan-NH4NO3 solid polymer electrolyte. J Power Sources 2006; 163(1): 382-5.
[http://dx.doi.org/10.1016/j.jpowsour.2006.09.042]
[79]
Naranappa V, Subramanian S, Karthikeyan S, Prabu M, Natarajan R, Chinnappanadar S. Synthesis and characterization of proton con-ducting polymer electrolyte based on poly (N-vinyl pyrrolidone) (PVP). J Appl Polym Sci 2013; 127: 1-6.
[80]
Sivadevi S, Selvasekarapandian S, Karthikeyan S, et al. Proton-conducting polymer electrolyte based on PVA-PAN blend polymer doped with NH4NO3. Int J Electroactive Mater 2013; 1: 64-70.
[81]
Hemlatha R, Alagar M, Subramaniam S, et al. Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH4Cl and its applications to electrochemical devices. Ionics 2019; 25(1): 141-54.
[http://dx.doi.org/10.1007/s11581-018-2564-9]
[82]
Ravinathan B, Begam MR, Karthikeyan S, Subramaniam S. Development and characterization of proton conducting polymer electrolyte based on PVA: Arginine: NH4SCN. AIP Conf Proc 2019; 2115: 030612.
[http://dx.doi.org/10.1063/1.5113451]
[83]
Vaivars G, Kleperis J, Azens A, Granqvist CG, Lusis A. Proton conducting composite electrolytes based on antimonic acid. Solid State Ion 1997; 97(1-4): 365-8.
[http://dx.doi.org/10.1016/S0167-2738(97)00049-0]
[84]
Przyluski J, Such K, Florianezyk Z, Wyeislik H, Wieczorek W. PEO-based polymer blends as materials for solid electrolytes. Synth Met 1990; 35(1-2): 241-7.
[http://dx.doi.org/10.1016/0379-6779(90)90048-P]
[85]
Binesh N, Bhat SV. Effects of a plasticizer on protonic conductivity of polymer electrolyte (PEG)100NH4ClO4. Solid State Ion 1999; 122(1-4): 291-9.
[http://dx.doi.org/10.1016/S0167-2738(99)00079-X]
[86]
Sharma JP, Sekhon SS. Effect of different plasticizers on the conductivity behaviour of polymer electrolytes containing NH4PF6. Indian J Phys 2005; 79: 761-3.
[87]
Mishra K, Rai DK. Studies of a plasticized PEO + NH4PF6 proton-conducting polymer electrolyte system and its application in a pro-ton battery. J Korean Phys Soc 2013; 62(2): 311-9.
[http://dx.doi.org/10.3938/jkps.62.311]
[88]
Shukur MF, Ithnin R, Illias HA, Kadir MFZ. Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and ap-plication in electrochemical devices. Opt Mater 2013; 35(10): 1834-41.
[http://dx.doi.org/10.1016/j.optmat.2013.03.004]
[89]
Liew CW, Ramesh S, Arof AK. A novel approach using ionic liquid-based poly(vinylalcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrogen Energy 2014; 39(6): 2917-28.
[http://dx.doi.org/10.1016/j.ijhydene.2013.07.092]
[90]
Daries Bella RS. Prem, Anand D, Daries Bella RS, Hirankumar G. Electrochmical studies on plasticized proton conducting polymer electrolytes based on poly(vinyl pyrolidone)-ammonium sulfamate. Int J Chem Sci 2016; 14: 482-6.
[91]
Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK. Effect of plasticizer on structure-property relationship in composite poly-mer electrolytes. J Power Sources 2005; 139(1-2): 384-94.
[http://dx.doi.org/10.1016/j.jpowsour.2004.05.050]
[92]
Aravindan V, Vickraman P. Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with na-nosized SiO2 filler. Mater Chem Phys 2009; 115(1): 251-7.
[http://dx.doi.org/10.1016/j.matchemphys.2008.11.062]
[93]
Lim CS, Teoh KH, Liew CW, Ramesh S. Capacitive behavior of electrical double layer capacitor using poly(vinyl alcohol)-lithium perchlorate based polymer electrolyte incorporated with TiO2. Mater Chem Phys 2014; 143(2): 661-7.
[http://dx.doi.org/10.1016/j.matchemphys.2013.09.051]
[94]
Safronova EY, Bobreshova OV, Vasquezc WG, Yaroslavtsev AB. Relationships between water uptake, conductivity and mechanical properties of hybrid MF-4SC membranes doped with silica nanoparticles. Mendeleev Commun 2015; 25(1): 54-5.
[http://dx.doi.org/10.1016/j.mencom.2015.01.020]
[95]
Sienkiewicz A, Krasucka P, Goworek J. Modification of silica-alkyl phase by cationic surfactant and silica precursor. Surf Innov 2017; 5(1): 54-64.
[http://dx.doi.org/10.1680/jsuin.16.00020]
[96]
Hashmi SA, Thakur AK, Upadhyaya HM. Experimental studies on polyethylene oxide-NaClO4 based composite polymer electrolytes dispersed with Na2SiO3. Eur Polym J 1998; 34(9): 1277-82.
[http://dx.doi.org/10.1016/S0014-3057(97)00269-3]
[97]
Croce F, Persi L, Scrosati B, Fiory FS, Plichta E, Hendrikson MA. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 2001; 46(16): 2457-61.
[http://dx.doi.org/10.1016/S0013-4686(01)00458-3]
[98]
Cheung IW, Chin KB, Greene ER, et al. Electrochemical and solid state NMR characterization of composite PEO-based polymer elec-trolytes. Electrochim Acta 2003; 48(14-16): 2149-56.
[http://dx.doi.org/10.1016/S0013-4686(03)00198-1]
[99]
Tayeb PH, Tayeb A. Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review. Carbohydr Polym 2019; 224: 115149.
[http://dx.doi.org/10.1016/j.carbpol.2019.115149] [PMID: 31472850]
[100]
Noonan C, Tajvidi M, Tayeb AH, Shahinpoor M, Tabatabaie SE. Structure-property relationships in hybrid cellulose nano-fibrils/nafion-based ionic polymer-metal composites. Materials (Basel) 2019; 12(8): 1269.
[http://dx.doi.org/10.3390/ma12081269] [PMID: 31003420]
[101]
Sharma S, Dhiman N, Pathak D, Kumar R. Effect of nanosize fumed silica on ionic conductivity of PVdF-HFP-based plasticized nanocomposite polymer electrolytes. Ionics 2016; 22(10): 1865-72.
[http://dx.doi.org/10.1007/s11581-016-1721-2]
[102]
Sharma S, Dhiman N, Pathak D, Kumar R. Effect of donor number of plasticizers on conductivity of polymer electrolytes containing NH4F. i-Manager’s. J Mater Sci 2016; 3: 28-34.
[103]
Kumar R, Sharma S, Pathak D, Dhiman N, Arora N. Ionic conductivity, FTIR, and thermal studies of nanocomposite plasticized pro-ton conducting polymer electrolytes. Solid State Ion 2017; 305: 57-62.
[http://dx.doi.org/10.1016/j.ssi.2017.04.020]
[104]
Sharma JP, Sekhon SS. Relative role of plasticizer and nano size fumed silica on the conductivity behaviour of PEO-NH4PF6 polymer electrolytes. Indian J Eng Mater Sci 2005; 12: 557-62.
[105]
Sekhon SS, Sharma JP, Park JS. Conductivity behaviour of nanocomposite polymer electrolytes: Role of fumed silica and plasticizer. Macromol Symp 2007; 249-250(1): 209-15.
[http://dx.doi.org/10.1002/masy.200750334]
[106]
Sharma JP, Sekhon SS. Effect of plasticizer and fumed silica on the ionic conductivity behaviour of proton conducting polymer electro-lytes containing HPF6. Bull Mater Sci 2013; 36(4): 629-34.
[http://dx.doi.org/10.1007/s12034-013-0516-6]
[107]
Sekhon SS, Lalia BS, Park JS, Kim CS, Yamada KY. Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 2006; 16(23): 2256-65.
[http://dx.doi.org/10.1039/b602280d]
[108]
Srivastava N, Chandra S. Solid State Ionics-New Development. World Scientific 1996; p. 411.
[109]
Sharma S, Pathak D, Dhiman N, Kumar R, Kumar M. FTIR, thermal and ionic conductivity studies of nanocomposite polymer electro-lytes. Surf Innov 2019; 7(1): 51-8.
[http://dx.doi.org/10.1680/jsuin.18.00033]
[110]
Sekhon SS, Arora N, Singh HP. Effect of donor number of solvent on the conductivity behaviour of nonaqueous proton-conducting polymer gel electrolytes. Solid State Ion 2003; 160(3-4): 301-7.
[http://dx.doi.org/10.1016/S0167-2738(03)00167-X]
[111]
Kumar R. Effect of donor number of solvent and nano-filler on the electrical behaviour of composite gel electrolytes. Insight: An Inter. J Sci 2014; 1: 1-6.
[112]
Kumar R, Sekhon SS. Conductivity modification of proton conducting polymer gel electrolytes containing a weak acid (orthohydroxy benzoic acid) with the addition of PMMA and fumed silica. J Appl Electrochem 2009; 39(3): 439-45.
[http://dx.doi.org/10.1007/s10800-008-9689-x]
[113]
Kumar R. Nano-composite polymer gel electrolytes containing ortho-nitro benzoic acid: Role of dielectric constant of solvent and fumed silica. Indian J Phys Proc Indian Assoc Cultiv Sci 2015; 89(3): 241-8.
[http://dx.doi.org/10.1007/s12648-014-0551-1]
[114]
Bunde A, Dieterich W, Roman E. Dispersed ionic conductors and percolation theory. Phys Rev Lett 1985; 55(1): 5-8.
[http://dx.doi.org/10.1103/PhysRevLett.55.5] [PMID: 10031666]
[115]
Bhattacharyya AJ, Maier J. Second phase effects on the conductivity of non-aqueous salt solutions: Bsoggy sand electrolytes. Adv Mater 2004; 16(910): 811-4.
[http://dx.doi.org/10.1002/adma.200306210]
[116]
Kumar R. Enhancement in electrical properties of PEO based nanocomposite gel electrolytes. i-Manager’s. J Mater Sci 2014; 2: 12-7.
[117]
Ragavendran K, Kalyani P, Veluchamy A, Banumathi S, Thirunakaran R, Benedict TJ. Characterization of plasticized PEO based solid polymer electrolyte by XRD and AC impedance methods. Port Electrochem Acta 2004; 22(2): 149-59.
[http://dx.doi.org/10.4152/pea.200402149]
[118]
Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001; 414(6861): 359-67.
[http://dx.doi.org/10.1038/35104644] [PMID: 11713543]
[119]
Kumar M, Sekhon SS. Solid State Ionics: Trends in the New Millennium. Singapore: World Scientific 2002; p. 377.
[120]
Kumar R, Sekhon SS. Evidence of ion pair breaking by dispersed polymer in polymer gel electrolytes. Ionics 2004; 10(5-6): 436-42.
[http://dx.doi.org/10.1007/BF02378005]
[121]
Sharma S, Pathak D, Dhiman N, Kumar R. Characterization of PVdF-HFP-based nanocomposite plasticized polymer electrolytes. Surf Innov 2017; 5(4): 251-6.
[http://dx.doi.org/10.1680/jsuin.17.00019]
[122]
Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I. Impedance studies on plasticized PMMA-LiX [X: CF3SO3−, N(CF3SO2)2−] polymer electrolytes. Mater Lett 2007; 61(10): 2026-9.
[http://dx.doi.org/10.1016/j.matlet.2006.08.008]
[123]
Kumar R, Sekhon SS. Effect of molecular weight of PMMA on the conductivity and viscosity behaviour of polymer gel electrolytes containing NH4CF3SO3. Ionics 2008; 14(6): 509-14.
[http://dx.doi.org/10.1007/s11581-008-0209-0]
[124]
Zhou J, Fedkiw PS. Ionic conductivity of composite electrolytes based on oligo (ethylene oxide) and fumed oxides. Solid State Ion 2004; 166(3-4): 275-93.
[http://dx.doi.org/10.1016/j.ssi.2003.11.017]
[125]
Sharma S, Pathak D, Kumar R, et al. Nanocomposite polymer electrolytes for energy devices. Ch. 2.Micro and nanotechnology, Nano tools, and devices for enhanced renewable energy. Elsevier Inc.. 2021; 27-40.
[http://dx.doi.org/10.1016/B978-0-12-821709-2.00002-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy