Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Antibacterial Potential of Ciprofloxacin Hybrids against Staphylococcus aureus

Author(s): Wenhua Zang*, Danxia Li, Li Gao, Shuang Gao, Pengfei Hao and Hua Bian

Volume 22, Issue 12, 2022

Published on: 06 April, 2022

Page: [1020 - 1034] Pages: 15

DOI: 10.2174/1568026622666220317162132

Price: $65

Abstract

Staphylococcus aureus (S. aureus), an important pathogen of both humans and animals, can cause a variety of infections at any site of the body. The evolution of S. aureus resistance is notorious, and the widespread of drug-resistant S. aureus, especially methicillin-resistant S. aureus (MRSA), has made the treatment difficult in recent decades. Nowadays, S. aureus is among the leading causes of bacterial infections, creating an urgent need for the development of novel antibacterial agents. Ciprofloxacin, characterized by high clinical efficacy, is a broad-spectrum antibacterial agent with frequency of prescription for various Gram-positive and Gram-negative pathogens, many of which are resistant to a wide range of antibiotics. However, the long-term and widespread use of this antibiotic has led to the emergence of ciprofloxacin-resistant pathogens, and ciprofloxacin- resistant S. aureus has been noted in clinical practice. Ciprofloxacin hybrids have been recognized as advanced chemical entities to simultaneously modulate multiple drug targets in bacteria, so ciprofloxacin hybrids have the potential to overcome drug resistance. The present review provides an overview of ciprofloxacin hybrids with anti-S. aureus potential that has been reported in the last decade with an emphasis on their structure-activity relationships and mechanisms of action.

Keywords: Ciprofloxacin, Hybrids, Antibacterial, Staphylococcus aureus, Structure-activity relationship, Methicillin-resistant.

Graphical Abstract
[1]
Tigabu, A.; Getaneh, A. Staphylococcus aureus, ESKAPE bacteria challenging current health care and community settings: A literature review. Clin. Lab., 2021, 67(7), 1539-1549.
[http://dx.doi.org/10.7754/Clin.Lab.2020.200930] [PMID: 34258960]
[2]
Heaton, C.J.; Gerbig, G.R.; Sensius, L.D.; Patel, V.; Smith, T.C. Staphylococcus aureus epidemiology in wildlife: A systematic review. Antibiotics (Basel), 2020, 9(2), e89.
[http://dx.doi.org/10.3390/antibiotics9020089] [PMID: 32085586]
[3]
Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence, 2021, 12(1), 547-569.
[http://dx.doi.org/10.1080/21505594.2021.1878688] [PMID: 33522395]
[4]
Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol., 2020, 10, 107.
[http://dx.doi.org/10.3389/fcimb.2020.00107] [PMID: 32257966]
[5]
Gatadi, S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg. Chem., 2019, 92, 103252.
[http://dx.doi.org/10.1016/j.bioorg.2019.103252] [PMID: 31518761]
[6]
Shankar, N.; Soe, P.M.; Tam, C.C. Prevalence and risk of acquisition of methicillin-resistant Staphylococcus aureus among households: A systematic review. Int. J. Infect. Dis., 2020, 92, 105-113.
[http://dx.doi.org/10.1016/j.ijid.2020.01.008] [PMID: 31945492]
[7]
Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[8]
Akhtar, R.; Yousaf, M.; Naqvi, S.A.R.; Irfan, M.; Zahoor, A.F.; Hussain, A.I.; Chatha, S.A.S. Synthesis of ciprofloxacin-based com-pounds: A review. Synth. Commun., 2016, 46(23), 1849-1879.
[http://dx.doi.org/10.1080/00397911.2016.1234622]
[9]
Yassine, I.; Rafei, R.; Osman, M.; Mallat, H.; Dabboussi, F.; Hamze, M. Plasmid-mediated quinolone resistance: Mechanisms, detection, and epidemiology in the Arab countries. Infect. Genet. Evol., 2019, 76, 104020.
[http://dx.doi.org/10.1016/j.meegid.2019.104020] [PMID: 31493557]
[10]
Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm, 2019, 10(10), 1719-1739.
[http://dx.doi.org/10.1039/C9MD00120D] [PMID: 31803393]
[11]
Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol., 2017, 66(5), 551-559.
[http://dx.doi.org/10.1099/jmm.0.000475] [PMID: 28504927]
[12]
Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. (Weinheim), 2018, 351(9), e1800141.
[http://dx.doi.org/10.1002/ardp.201800141] [PMID: 30048015]
[13]
Saadeh, H.A.; Mubarak, M.S. Hybrid drugs as potential combatants against drug-resistant microbes: A review. Curr. Top. Med. Chem., 2017, 17(8), 895-906.
[http://dx.doi.org/10.2174/1568026616666160927155251] [PMID: 27697051]
[14]
Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro an-tiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev., 2020, 40(3), 931-971.
[http://dx.doi.org/10.1002/med.21643] [PMID: 31692025]
[15]
Jia, Y.; Zhao, L. The antibacterial activity of fluoroquinolone derivatives: An update (2018-2021). Eur. J. Med. Chem., 2021, 224, 113741.
[http://dx.doi.org/10.1016/j.ejmech.2021.113741] [PMID: 34365130]
[16]
Suaifan, G.A.R.Y.; Mohammed, A.A.M. Fluoroquinolones structural and medicinal developments (2013-2018): Where are we now? Bioorg. Med. Chem., 2019, 27(14), 3005-3060.
[http://dx.doi.org/10.1016/j.bmc.2019.05.038] [PMID: 31182257]
[17]
Fedorowicz, J. Sczewski, J. Modifications of quinolones and fluoroquinolones: Hybrid compounds and dual-action molecules. Monatsh. Chem., 2018, 149(7), 1199-1245.
[http://dx.doi.org/10.1007/s00706-018-2215-x] [PMID: 29983452]
[18]
Parkes, A.L.; Yule, I.A. Hybrid antibiotics - clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680.
[http://dx.doi.org/10.1080/17460441.2016.1187597] [PMID: 27169483]
[19]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[20]
Strzelecka, M. Świątek, P. 1,2,4-Triazoles as important antibacterial agents. Pharmaceuticals (Basel), 2021, 14(3), e224.
[http://dx.doi.org/10.3390/ph14030224] [PMID: 33799936]
[21]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 206, 112686.
[http://dx.doi.org/10.1016/j.ejmech.2020.112686] [PMID: 32795773]
[22]
Ge, X.; Xu, Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch. Pharm. (Weinheim), 2021, 354(1), e2000223.
[http://dx.doi.org/10.1002/ardp.202000223] [PMID: 32985011]
[23]
Faidallah, H.M.; Girgis, A.S.; Tiwari, A.D.; Honkanadavar, H.H.; Thomas, S.J.; Samir, A.; Kalmouch, A.; Alamry, K.A.; Khan, K.A.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Asiri, A.M.; Panda, S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur. J. Med. Chem., 2018, 143, 1524-1534.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.042] [PMID: 29126731]
[24]
Kant, R.; Singh, V.; Nath, G.; Awasthi, S.K.; Agarwal, A. Design, synthesis and biological evaluation of ciprofloxacin tethered bis-1,2,3-triazole conjugates as potent antibacterial agents. Eur. J. Med. Chem., 2016, 124, 218-228.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.031] [PMID: 27592391]
[25]
Rajulu, G.G.; Naik, H.S.B.; Viswanathan, A.; Agarwal, D.S.; Sambasivam, G.; Koppolu, K.P. Design and synthesis of new N-substituted amino methyl-[1,2,3]triazolyl moieties of fluoroquinolones as antibacterial agents. Med. Chem. Res., 2013, 22(8), 3843-3856.
[http://dx.doi.org/10.1007/s00044-012-0394-2]
[26]
Rajulu, G.G.; Bhojya Naik, H.S.; Viswanadhan, A.; Thiruvengadam, J.; Rajesh, K.; Ganesh, S.; Jagadheshan, H.; Kesavan, P.K. New hydroxamic acid derivatives of fluoroquinolones: Synthesis and evaluation of antibacterial and anticancer properties. Chem. Pharm. Bull. (Tokyo), 2014, 62(2), 168-175.
[http://dx.doi.org/10.1248/cpb.c13-00797] [PMID: 24270473]
[27]
Plech, T.; Wujec, M.; Kosikowska, U.; Malm, A.; Rajtar, B.; Polz-Dacewicz, M. Synthesis and in vitro activity of 1,2,4-triazole-ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Eur. J. Med. Chem., 2013, 60, 128-134.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.040] [PMID: 23287058]
[28]
Plech, T. Kapro nB.; Paneth, A.; Kosikowska, U.; Malm, A.; Starzelczyk, A.; Stczek, P.; Swiatek, L.;Rajtar, B.; Polz-Dacewicz, M. De-termination of the primary molecular target of 1,2,4-triazole-ciprofloxacin hybrids. Molecules, 2015, 20(4), 6254-6272.
[http://dx.doi.org/10.3390/molecules20046254] [PMID: 25859782]
[29]
Plech, T. Kapro nB.; Paneth, A.; Kosikowska, U.; Malm, A.; Starzelczyk, A.; Stczek, P.; Swiatek, L.;Rajtar, B.; Polz-Dacewicz, M. Search for factors affecting antibacterial activity and toxicity of 1,2,4-triazole-ciprofloxacin hybrids. Eur. J. Med. Chem., 2015, 97, 94-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.058] [PMID: 25951434]
[30]
Gao, Y.; Na, L.X.; Xu, Z.; Zhang, S.; Wang, A.P.; Lü, K.; Guo, H.Y.; Liu, M.L. Design, synthesis and antibacterial evaluation of 1-[(1R,2S)-2-fluorocyclopropyl]ciprofloxacin-1,2,4-triazole-5(4H)-thione hybrids. Chem. Biodivers., 2018, 15(10), e1800261.
[http://dx.doi.org/10.1002/cbdv.201800261] [PMID: 29987907]
[31]
Geng, Y.H.; Wei, Z.Q.; Xu, Z.; Na, L.X.; Zhang, S.; Guo, H.Y.; Liu, M.L.; Feng, L.S.; You, X.F. Design, synthesis and antibacterial eval-uation of 1-[(1R,2S)-2-fluorocyclopropyl] ciprofloxacin-(4-methyl-3-aryl)-1,2,4-triazole-5(4H)-thione hybrids. Rev. Roum. Chim., 2019, 64(1), 101-107.
[http://dx.doi.org/10.33224/rrch.2019.64.1.10]
[32]
Mentese, M.; Demirbas, N.; Mermer, A.; Demirci, S.; Demirbas, A.; Ayaz, F.A. Novel azole-functionalited flouroquinolone hybrids: Design, conventional and microwave irradiated synthesis, evaluation as antibacterial and antioxidant agents. Lett. Drug Des. Discov., 2018, 15(1), 46-64.
[http://dx.doi.org/10.2174/1570180814666170823163540]
[33]
Mohammed, H.H.H.; Abdelhafez, E.M.N.; Abbas, S.H.; Moustafa, G.A.I.; Hauk, G.; Berger, J.M.; Mitarai, S.; Arai, M.; Abd El-Baky, R.M.; Abuo-Rahma, G.E.A. Design, synthesis and molecular docking of new N-4-piperazinyl ciprofloxacin-triazole hybrids with poten-tial antimicrobial activity. Bioorg. Chem., 2019, 88, 102952.
[http://dx.doi.org/10.1016/j.bioorg.2019.102952] [PMID: 31039471]
[34]
Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole ring-A biologically active scaffold. Molecules, 2021, 26(11), e3166.
[http://dx.doi.org/10.3390/molecules26113166] [PMID: 34070661]
[35]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.035] [PMID: 25553540]
[36]
Siwach, A.; Verma, P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC Chem., 2020, 14(1), 70.
[http://dx.doi.org/10.1186/s13065-020-00721-2] [PMID: 33372629]
[37]
Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem., 2020, 63(15), 7923-7956.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01245] [PMID: 32208685]
[38]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(4), 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575] [PMID: 27976971]
[39]
Othman, A.A.; Kihel, M.; Amara, S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arab. J. Chem., 2019, 12(7), 1660-1675.
[http://dx.doi.org/10.1016/j.arabjc.2014.09.003]
[40]
Sharma, P.C.; Kumar, R.; Chaudhary, M.; Sharma, A.; Rajak, H. Synthesis and biological evaluation of novel benzothiazole clubbed fluoroquinolone derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(1), 1-10.
[http://dx.doi.org/10.3109/14756366.2011.611943] [PMID: 21981002]
[41]
Agrawal, K.M.; Talele, G.S. Synthesis and antibacterial, antimycobacterial and docking studies of novel N-piperazinyl fluoroquinolones. Med. Chem. Res., 2013, 22(2), 818-831.
[http://dx.doi.org/10.1007/s00044-012-0074-2]
[42]
Demirci, A.; Karayel, K.G.; Tatar, E.; Okullu, S.O.; Unubol, N.; Tasli, P.N.; Kocagoz, Z.T.; Sahin, F.; Kugukeuzel, I. Synthesis and eval-uation of novel 1,3,4-thiadiazole-fluoroquinolone hybrids as antibacterial, antituberculosis, and anticancer agents. Turk. J. Chem., 2018, 42, 839-858.
[43]
Pandit, N.; Shah, K.; Agrawal, N.; Upmanyu, N.; Shrivastava, S.K.; Mishra, P. Synthesis, characterization and biological evaluation of some novel fluoroquinolones. Med. Chem. Res., 2016, 25(5), 843-851.
[http://dx.doi.org/10.1007/s00044-016-1526-x]
[44]
Singhai, A.; Gupta, M.K. Synthesis, characterization and biological evaluation of substituted 1,3,4-oxadiazole derivative: Derived from ciprofloxacin. Asian J. Pharm. Clin. Res., 2019, 12(9), 205-209.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i9.34712]
[45]
Varpe, B.D.; Kulkarni, A.A.; Jadhav, S.B.; Mali, A.S.; Jadhav, S.Y. Isatin hybrids and their pharmacological investigations. Mini Rev. Med. Chem., 2021, 21(10), 1182-1225.
[http://dx.doi.org/10.2174/1389557520999201209213029] [PMID: 33302835]
[46]
Kumar, G.; Singh, N.P.; Kumar, K. Recent advancement of synthesis of isatins as a versatile pharmacophore: A review. Drug Res. (Stuttg.), 2021, 71(3), 115-121.
[http://dx.doi.org/10.1055/a-1238-2639] [PMID: 33296925]
[47]
Song, F.; Li, Z.; Bian, Y.; Huo, X.; Fang, J.; Shao, L.; Zhou, M. Indole/isatin-containing hybrids as potential antibacterial agents. Arch. Pharm. (Weinheim), 2020, 353(10), e2000143.
[http://dx.doi.org/10.1002/ardp.202000143] [PMID: 32667714]
[48]
Nath, P.; Mukherjee, A.; Mukherjee, S.; Banerjee, S.; Das, S.; Banerjee, S. Isatin: A scaffold with immense biodiversity. Mini Rev. Med. Chem., 2021, 21(9), 1096-1112.
[http://dx.doi.org/10.2174/2211536609666201125115559] [PMID: 33238872]
[49]
Wang, R.; Yin, X.; Zhang, Y.; Yan, W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur. J. Med. Chem., 2018, 156, 580-586.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.025] [PMID: 30025351]
[50]
Guo, H. Design, synthesis, and antibacterial evaluation of propylene-tethered 8-methoxyl ciprofloxacin-isatin hybrids. J. Heterocycl. Chem., 2018, 55(10), 2434-2440.
[http://dx.doi.org/10.1002/jhet.3279]
[51]
Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17(3), 337-344.
[http://dx.doi.org/10.1016/j.jscs.2011.10.022]
[52]
Niveditha, N.; Begum, M.; Prathibha, D.; Sirisha, K.; Mahender, P.; Chitra, C.; Rao, V.R.; Reddy, V.M.; Achaiah, G. Design, synthesis and pharmacological evaluation of some C3 heterocyclic-substituted ciprofloxacin derivatives as chimeric antitubercular agents. Chem. Pharm. Bull. (Tokyo), 2020, 68(12), 1170-1177.
[http://dx.doi.org/10.1248/cpb.c20-00525] [PMID: 33268649]
[53]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[54]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[55]
Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm. (Weinheim), 2021, 354(3), e2000232.
[http://dx.doi.org/10.1002/ardp.202000232] [PMID: 33210348]
[56]
Majalekar, P.P.; Shirote, P.J. Fluoroquinolones: Blessings or curses. Curr. Drug Targets, 2020, 21(13), 1354-1370.
[http://dx.doi.org/10.2174/1389450121666200621193355] [PMID: 32564750]
[57]
Ross, A.G.; Benton, B.M.; Chin, D.; De Pascale, G.; Fuller, J.; Leeds, J.A.; Reck, F.; Richie, D.L.; Vo, J.; LaMarche, M.J. Synthesis of ciprofloxacin dimers for evaluation of bacterial permeability in atypical chemical space. Bioorg. Med. Chem. Lett., 2015, 25(17), 3468-3475.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.010] [PMID: 26189081]
[58]
Darehkordi, A.; Ramezani, M.; Rahmani, F.; Ramezani, M. Design, synthesis and evaluation of antibacterial effects of a new class of piperazinylquinolone derivatives. J. Heterocycl. Chem., 2016, 53(1), 89-94.
[http://dx.doi.org/10.1002/jhet.2391]
[59]
Bansal, M.; Kaur, G.; Kaur, M.; Sharad, L. Theoretical molecular predictions and antimicrobial activities of newly synthesized molecular hybrids of norfloxacin and ciprofloxacin. J. Heterocycl. Chem., 2020, 57(1), 225-237.
[http://dx.doi.org/10.1002/jhet.3768]
[60]
Panda, S.S.; Liaqat, S.; Girgis, A.S.; Samir, A.; Hall, C.D.; Katritzky, A.R. Novel antibacterial active quinolone-fluoroquinolone conju-gates and 2D-QSAR studies. Bioorg. Med. Chem. Lett., 2015, 25(18), 3816-3821.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.077] [PMID: 26253630]
[61]
Fedorowicz, J. Sączewski, J.; Konopacka, A.; Waleron, K.; Lejnowski, D.; Ciura, K.; Tomašič T.; Skok, Ž.;Savijoki, K.; Morawska, M.; Gilbert-Girard, S.; Fallarero, A. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur. J. Med. Chem., 2019, 179, 576-590.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.071] [PMID: 31279292]
[62]
Vu, T.H.; Ha-Duong, N.T.; Aubry, A.; Capton, E.; Fechter, P.; Plésiat, P.; Verbeke, P.; Serradji, N. In vitro activities of a new fluoroquin-olone derivative highly active against Chlamydia trachomatis. Bioorg. Chem., 2019, 83, 180-185.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.033] [PMID: 30380446]
[63]
Sharma, S.; Sharma, K.; Pathak, S.; Kumar, M.; Sharma, P.K. Synthesis of medicinally important quinazolines and their derivatives: A review. Open Med. Chem. J., 2020, 14, 108-121.
[http://dx.doi.org/10.2174/1874104502014010108]
[64]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[65]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[PMID: 27051427]
[66]
Raju, G.N.; Sai, K.B.; Resshma, V.; Sudarshini, N.; Sowmya, P.L.; Nalini, Y.; Nadendla, R.R. Potential antimicrobial activities of quinazolinone derivatives. J. Chem. Pharm. Res., 2015, 7(5), 1279-1287.
[67]
Norouzbahari, M. Salarinejad, S.; Güran, M.; Şanlıtütrk G.; Emamgholipour, Z.; Bijanzadeh, H.R.; Toolabi, M.; Foroumadi, A. Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moie-ty. Daru, 2020, 28(2), 661-672.
[http://dx.doi.org/10.1007/s40199-020-00373-6] [PMID: 33030668]
[68]
Rajput, R. Synthesis and pharmacological evaluation of some novel 1,2,3,4-tetrahydroquinazolinone derivatives. Int. J. Pharm. Sci. Res., 2020, 11(8), 3912-3922.
[69]
Qandil, A.M.; Al-Zoubi, L.O.; Al-Bakri, A.G.; Amawi, H.A.; Al-Balas, Q.A.; Alkatheri, A.M.; Albekairy, A.M. Synthesis, antibacterial evaluation and QSAR of -substituted-N4-acetamides of ciprofloxacin and norfloxacin. Antibiotics (Basel), 2014, 3(3), 244-269.
[http://dx.doi.org/10.3390/antibiotics3030244] [PMID: 27025747]
[70]
Mokaber-Esfahani, M.; Eshghi, H.; Akbarzadeh, M.; Gholizadeh, M.; Mirzaie, Y.; Hakimi, M.; Lari, J. Synthesis and antibacterial evalua-tion of new pyrimidyl N-ciprofloxacin derivatives. ChemistrySelect, 2019, 4(31), 8930-8933.
[http://dx.doi.org/10.1002/slct.201901924]
[71]
Yadav, P.; Hada, S.; Yadav, D.K.; Kumari, N. Synthesis and antibacterial activity of 1,3-dione derivatives of 1-cyclopropyl-7-[4-(2,6-dimethyl/dimethoylpyrimidin-2-yl-diazenyl)-piperzin-1-yl]-6-fluoro-4-oxo-1,4-dihydroquinolone-3-carboxylic acid. Indian J. Chem., 2018, 57B, 1065-1069.
[72]
Jafar, N.N.A.; Majeed, N.S. Microwave assisted synthesis of amide derivatives of the drug ciprofloxacin and screening the biological properties. Int. J. Chemtech Res., 2016, 9(7), 387-395.
[73]
Kishbaugh, T.L.S. Pyridines and imidazopyridines with medicinal significance. Curr. Top. Med. Chem., 2016, 16(28), 3274-3302.
[http://dx.doi.org/10.2174/1568026616666160506145141] [PMID: 27150370]
[74]
Hassan, N.W.; Saudi, M.N.; Abdel-Ghany, Y.S.; Ismail, A.; Elzahhar, P.A.; Sriram, D.; Nassra, R.; Abdel-Aziz, M.M.; El-Hawash, S.A. Novel pyrazine based anti-tubercular agents: Design, synthesis, biological evaluation and in silico studies. Bioorg. Chem., 2020, 96, 103610.
[http://dx.doi.org/10.1016/j.bioorg.2020.103610] [PMID: 32028062]
[75]
Deep, A.; Bhatia, R.K.; Kaur, R.; Kumar, S.; Jain, U.K.; Singh, H.; Batra, S.; Kaushik, D.; Deb, P.K. Imidazo[1,2-a]pyridine scaffold as prospective therapeutic agents. Curr. Top. Med. Chem., 2017, 17(2), 238-250.
[http://dx.doi.org/10.2174/1568026616666160530153233] [PMID: 27237332]
[76]
Ogryzek, M.; Chylewska, A.; Królicka, A.; Banasiuk, R.; Turecka, K.; Lesiak, D.; Nidzworski, D.; Makowski, M. Coordination chemistry of pyrazine derivatives analogues of PZA: Design, synthesis, characterization and biological activity. RSC Advances, 2016, 6(57), 52009-52025.
[http://dx.doi.org/10.1039/C6RA03068H]
[77]
Tahir, S.; Mahmood, T.; Dastgir, F.; Haq, I.U.; Waseem, A.; Rashid, U. Design, synthesis and anti-bacterial studies of piperazine deriva-tives against drug resistant bacteria. Eur. J. Med. Chem., 2019, 166, 224-231.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.062] [PMID: 30711832]
[78]
Al-Wahaibi, L.H.; Amer, A.A.; Marzouk, A.A.; Gomaa, H.A.M.; Youssif, B.G.M.; Abdelhamid, A.A. Design, synthesis, and antibacterial screening of some novel heteroaryl-based ciprofloxacin derivatives as DNA gyrase and topoisomerase IV inhibitors. Pharmaceuticals (Basel), 2021, 14(5), e399.
[http://dx.doi.org/10.3390/ph14050399] [PMID: 33922361]
[79]
Panda, S.S.; Detistov, O.S.; Girgis, A.S.; Mohapatra, P.P.; Samir, A.; Katritzky, A.R. Synthesis and molecular modeling of antimicrobial active fluoroquinolone-pyrazine conjugates with amino acid linkers. Bioorg. Med. Chem. Lett., 2016, 26(9), 2198-2205.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.062] [PMID: 27025339]
[80]
Schepetkin, I.A.; Plotnikov, M.B.; Khlebnikov, A.I.; Plotnikova, T.M.; Quinn, M.T. Oximes: Novel therapeutics with anticancer and anti-inflammatory potential. Biomolecules, 2021, 11(6), e777.
[http://dx.doi.org/10.3390/biom11060777] [PMID: 34067242]
[81]
Vessally, E.; Saeidian, H.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A. A review on synthetic applications of oxime esters. Curr. Org. Chem., 2017, 21(3), 249-271.
[http://dx.doi.org/10.2174/1385272820666161018150925]
[82]
Bisacchi, G.S. Origins of the quinolone class of antibacterials: An expanded “Discovery story”. J. Med. Chem., 2015, 58(12), 4874-4882.
[http://dx.doi.org/10.1021/jm501881c] [PMID: 25738967]
[83]
Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur. J. Med. Chem., 2018, 157, 1223-1248.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.095] [PMID: 30193220]
[84]
Aziz, H.A.; Moustafa, G.A.I.; Abuo-Rahma, G.E.A.; Rabea, S.M.; Hauk, G.; Krishna, V.S.; Sriram, D.; Berger, J.M.; Abbas, S.H. Synthe-sis and antimicrobial evaluation of new nitric oxide-donating fluoroquinolone/oxime hybrids. Arch. Pharm. (Weinheim), 2021, 354(1), e2000180.
[http://dx.doi.org/10.1002/ardp.202000180] [PMID: 32959443]
[85]
Patel, M.M.; Patel, L.J. Design, synthesis and molecular docking of 1-cyclopropyl-6-fluoro-4-oxo-7-{4-[2-(4-substituted-phenyl)-2-(substituted)-ethyl]-1-piperazinyl}-1,4-dihydroquinoline-3-carboxylic acid as an antimicrobial agents. Curr. Drug Discov. Technol., 2017, 14(4), 255-269.
[http://dx.doi.org/10.2174/1570163814666170224110500] [PMID: 28240185]
[86]
Shalmali, N.; Ali, M.R.; Bawa, S. Imidazole: An essential edifice for the identification of new lead compounds and drug development. Mini Rev. Med. Chem., 2018, 18(2), 142-163.
[http://dx.doi.org/10.2174/1389557517666170228113656] [PMID: 28245779]
[87]
Zou, Y.; Liu, L.; Liu, J.; Liu, G. Bioisosteres in drug discovery: Focus on tetrazole. Future Med. Chem., 2020, 12(2), 91-93.
[http://dx.doi.org/10.4155/fmc-2019-0288] [PMID: 31762337]
[88]
Azad, C.S.; Narula, A.K. An operational transformation of 3-carboxy-4-quinolones into 3-nitro-4-quinolones via ipsonitration using polysaccharide supported copper nanoparticles: Synthesis of 3-tetrazolyl bioisosteres of 3-carboxy-4-quinolones as antibacterial agents. RSC Advances, 2016, 6, 19052-19059.
[http://dx.doi.org/10.1039/C5RA26909A]
[89]
Elavarasan, T.; Sivakumar, D.; Gopalakrishnan, M. Tetrazoles-ciprofloxacin hybrids as antibacterial and antifungal agents. J. Pharm. Res., 2018, 12(5), 749-757.
[90]
Fan, B.Z.; Hiasa, H.; Lv, W.; Brody, S.; Yang, Z.Y.; Aldrich, C.; Cushman, M.; Liang, J.H. Design, synthesis and structure-activity rela-tionships of novel 15-membered macrolides: Quinolone/quinoline-containing side chains tethered to the C-6 position of azithromycin acylides. Eur. J. Med. Chem., 2020, 193, e112222.
[http://dx.doi.org/10.1016/j.ejmech.2020.112222]
[91]
Pavlovi D.; Kimmins, S.; Mutak, S. Synthesis of novel 15-membered 8a-azahomoerythromycin A acylides: Consequences of structural modification at the C-3 and C-6 position on antibacterial activity. Eur. J. Med. Chem., 2017, 125, 210-224.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.022] [PMID: 27657812]
[92]
Wang, X.D.; Wei, W.; Wang, P.F.; Tang, Y.T.; Deng, R.C.; Li, B.; Zhou, S.S.; Zhang, J.W.; Zhang, L.; Xiao, Z.P.; Ouyang, H.; Zhu, H.L. Novel 3-arylfuran-2(5H)-one-fluoroquinolone hybrid: Design, synthesis and evaluation as antibacterial agent. Bioorg. Med. Chem., 2014, 22(14), 3620-3628.
[http://dx.doi.org/10.1016/j.bmc.2014.05.018] [PMID: 24882676]
[93]
Emami, S.; Shahrokhirad, N.; Foroumadi, A.; Faramarzi, M.A.; Samadi, N.; Soltani-Ghofrani, N. 7-Piperazinylquinolones with meth-ylene-bridged nitrofuran scaffold as new antibacterial agents. Med. Chem. Res., 2013, 22(12), 5940-5947.
[http://dx.doi.org/10.1007/s00044-013-0581-9]
[94]
McPherson, J.C., III; Runner, R.; Buxton, T.B.; Hartmann, J.F.; Farcasiu, D.; Bereczki, I.; Roth, E.; Tollas, S.; Ostorházi, E.; Rozgonyi, F.; Herczegh, P. Synthesis of osteotropic hydroxybisphosphonate derivatives of fluoroquinolone antibacterials. Eur. J. Med. Chem., 2012, 47(1), 615-618.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.049] [PMID: 22093760]
[95]
Bykowska, A.; Starosta, R.; Komarnicka, U.K.; Ciunik, Z.; Kyziol, A.; Guz-Regner, K.; Bugla-Ploskonska, G.; Jezowska-Bojczuk, M. Phosphine derivatives of ciprofloxacin and norfloxacin, a new class of potential therapeutic agents. New J. Chem., 2014, 38(3), 1062-1071.
[http://dx.doi.org/10.1039/c3nj01243c]
[96]
Bykowska, A.; Starosta, R.; Brzuszkiewicz, A.; Bazanów, B.; Florek, M.; Jackulak, N.; Król, J.; Grzesiak, J. Kaliski, K.; Jezowska-Bojczuk, M. Synthesis, properties and biological activity of a novel phosphines ligand derived from ciprofloxacin. Polyhedron, 2013, 60, 23-29.
[http://dx.doi.org/10.1016/j.poly.2013.04.059]
[97]
Kang, S.; Sunwoo, K.; Jung, Y.; Hur, J.K.; Park, K.H.; Kim, J.S.; Kim, D. Membrane-targeting triphenylphosphonium functionalized ciprofloxacin for methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics (Basel), 2020, 9(11), e758.
[http://dx.doi.org/10.3390/antibiotics9110758] [PMID: 33143023]
[98]
Esfahani, E.N.; Mohammadi-Khanaposhtani, M.; Rezaei, Z.; Valizadeh, Y.; Rajabnia, R.; Bagheri, M.; Bandarian, F.; Faramarzi, M.A.; Samadi, N.; Amini, M.R.; Mahdavi, M.; Larijani, B. Biology-oriented drug synthesis (BIODS) approach towards synthesis of ciprofloxa-cin-dithiocarbamate hybrids and their antibacterial potential both in vitro and in silico. Chem. Biodivers., 2018, 15(10), e1800273.
[http://dx.doi.org/10.1002/cbdv.201800273] [PMID: 30019534]
[99]
Esfahani, E.N.; Mohammadi-Khanaposhtani, M.; Rezaei, Z.; Valizadeh, Y.; Rajabnia, R.; Hassankalhori, M.; Bandarian, F.; Mahdavi, M.; Larijani, B. New ciprofloxacin-dithiocarbamate-benzyl hybrids: Design, synthesis, antibacterial evaluation, and molecular modeling stud-ies. Res. Chem. Intermed., 2019, 45(2), 223-236.
[http://dx.doi.org/10.1007/s11164-018-3598-3]
[100]
Szczupak, Ł.; Kowalczyk, A.; Trzybiński, D.; Woźniak, K.; Mendoza, G.; Arruebo, M.; Steverding, D.; Stączek, P.; Kowalski, K. Organ-ometallic ciprofloxacin conjugates with dual action: Synthesis, characterization, and antimicrobial and cytotoxicity studies. Dalton Trans., 2020, 49(5), 1403-1415.
[http://dx.doi.org/10.1039/C9DT03948A] [PMID: 31851200]
[101]
Xiao, Z.P.; Wang, X.D.; Wang, P.F.; Zhou, Y.; Zhang, J.W.; Zhang, L.; Zhou, J.; Zhou, S.S.; Ouyang, H.; Lin, X.Y.; Mustapa, M.; Reyin-baike, A.; Zhu, H.L. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur. J. Med. Chem., 2014, 80, 92-100.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.037] [PMID: 24769347]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy