Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

The Immune System as a Therapeutic Target for Old and New Drugs in Parkinson’s Disease

Author(s): Luca Magistrelli, Elena Contaldi and Cristoforo Comi*

Volume 22, Issue 1, 2023

Published on: 19 April, 2022

Page: [66 - 70] Pages: 5

DOI: 10.2174/1871527321666220310122415

Price: $65

conference banner
Abstract

Parkinson’s disease (PD) is a common neurodegenerative disease characterized by loss of dopaminergic neurons and intraneuronal accumulation of protein aggregates. The exact mechanisms leading to neuronal death in PD are not fully understood, but several different molecular pathways are involved, leading to the concept that molecular subtypes may coexist in the nosological spectrum of PD. To this respect, immune system activation, both in the periphery and inside the central nervous system, was detected as a common trait of several pathogenic pathways of PD. The current working hypothesis implies that immune cells shift towards a proinflammatory phenotype and trigger the production of neurotoxic cytokines, ultimately contributing to neurodegeneration. While it is very important to understand how commonly used antiparkinson drugs interact with such changes, the search for treatments that may directly or indirectly modulate immune function is a great opportunity for disease modification.

Keywords: Disease modifying drugs, immunity, neurodegeneration, disease progression, neuroprotection, regeneration.

Graphical Abstract
[1]
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 2017; 124(8): 901-5.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[2]
Yang W, Hamilton JL, Kopil C, et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis 2020; 6(1): 15.
[http://dx.doi.org/10.1038/s41531-020-0117-1] [PMID: 32665974]
[3]
Tofaris GK, Spillantini MG. Alpha-synuclein dysfunction in Lewy body diseases. Mov Disord 2005; 20(S12) (Suppl. 12): S37-44.
[http://dx.doi.org/10.1002/mds.20538] [PMID: 16092089]
[4]
Olson KE, Namminga KL, Lu Y, et al. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson’s disease. EBioMedicine 2021; 67: 103380.
[http://dx.doi.org/10.1016/j.ebiom.2021.103380] [PMID: 34000620]
[5]
Cappellano G, Carecchio M, Fleetwood T, et al. Immunity and inflammation in neurodegenerative diseases. Am J Neurodegener Dis 2013; 2(2): 89-107.
[PMID: 23844334]
[6]
Brochard V, Combadière B, Prigent A, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 2009; 119(1): 182-92.
[http://dx.doi.org/10.1172/JCI36470] [PMID: 19104149]
[7]
Sulzer D, Alcalay RN, Garretti F, et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 2017; 546(7660): 656-61.
[http://dx.doi.org/10.1038/nature22815] [PMID: 28636593]
[8]
Kustrimovic N, Comi C, Magistrelli L, et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation 2018; 15(1): 205.
[http://dx.doi.org/10.1186/s12974-018-1248-8] [PMID: 30001736]
[9]
Kustrimovic N, Rasini E, Legnaro M, et al. Dopaminergic receptors on CD4+ T naive and memory lymphocytes correlate with motor impairment in patients with Parkinson’s disease. Sci Rep 2016; 6(1): 33738.
[http://dx.doi.org/10.1038/srep33738] [PMID: 27652978]
[10]
De Francesco E, Terzaghi M, Storelli E, et al. CD4+ T-Cell transcription factors in idiopathic REM sleep behavior disorder and Parkinson’s disease. Mov Disord 2021; 36(1): 225-9.
[http://dx.doi.org/10.1002/mds.28137] [PMID: 32649001]
[11]
Contaldi E, Magistrelli L, Milner AV, Cosentino M, Marino F, Comi C. Expression of transcription factors in CD4 + T cells as potential biomarkers of motor complications in Parkinson’s disease. J Parkinsons Dis 2021; 11(2): 507-14.
[http://dx.doi.org/10.3233/JPD-202417] [PMID: 33386815]
[12]
Magistrelli L, Storelli E, Rasini E, et al. Relationship between circulating CD4+ T lymphocytes and cognitive impairment in patients with Parkinson’s disease. Brain Behav Immun 2020; 89: 668-74.
[http://dx.doi.org/10.1016/j.bbi.2020.07.005] [PMID: 32688028]
[13]
Alberio T, Pippione AC, Comi C, et al. Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson’s disease. IUBMB Life 2012; 64(10): 846-52.
[http://dx.doi.org/10.1002/iub.1073] [PMID: 22815142]
[14]
Cosentino M, Ferrari M, Kustrimovic N, Rasini E, Marino F. Influence of dopamine receptor gene polymorphisms on circulating T lymphocytes: A pilot study in healthy subjects. Hum Immunol 2015; 76(10): 747-52.
[http://dx.doi.org/10.1016/j.humimm.2015.09.032] [PMID: 26429319]
[15]
Ferrari M, Comi C, Marino F, et al. Polymorphisms of dopamine receptor genes and risk of visual hallucinations in Parkinson’s patients. Eur J Clin Pharmacol 2016; 72(11): 1335-41.
[http://dx.doi.org/10.1007/s00228-016-2111-4] [PMID: 27497990]
[16]
Zhu H, Lemos H, Bhatt B, et al. Carbidopa, a drug in use for management of Parkinson disease inhibits T cell activation and autoimmunity. PLoS One 2017; 12(9): e0183484.
[http://dx.doi.org/10.1371/journal.pone.0183484] [PMID: 28898256]
[17]
Comi C, Tondo G. Insights into the protective role of immunity in neurodegenerative disease. Neural Regen Res 2017; 12(1): 64-5.
[http://dx.doi.org/10.4103/1673-5374.198980] [PMID: 28250745]
[18]
Kuric E, Ruscher K. Reduction of rat brain CD8 + T-cells by levodopa/benserazide treatment after experimental stroke. Eur J Neurosci 2014; 40(2): 2463-70.
[http://dx.doi.org/10.1111/ejn.12598] [PMID: 24754803]
[19]
Thomas Müller KW, Przuntek Horst RK, Krüger R, Horst P. Selegiline stimulates biosynthesis of cytokines interleukin-1β and interleukin-6. Neuroreport 1996; 7(18): 2847-8.
[http://dx.doi.org/10.1097/00001756-199611250-00007] [PMID: 9116194]
[20]
Müller T, Kuhn W, Krüger R, Przuntek H. Selegiline as immunostimulant - a novel mechanism of action? J Neural Transm Suppl 1998; 52: 321-8.
[http://dx.doi.org/10.1007/978-3-7091-6499-0_33] [PMID: 9564633]
[21]
Tatton WG, Ansari K, Ju W, Salo PT, Yu PH. Selegiline induces “Trophic-Like” rescue of dying neurons without MAO inhibition. In: Tang LC, Tang SJ, Eds. Neurochemistry in Clinical Application and Advances in Experimental Medicine and Biology US. Boston, MA: Springer 1995; Vol. 363: pp. 15-6.
[http://dx.doi.org/10.1007/978-1-4615-1857-0_2]
[22]
Morsali D, Bechtold D, Lee W, et al. Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis. Brain 2013; 136(4): 1067-82.
[http://dx.doi.org/10.1093/brain/awt041] [PMID: 23518709]
[23]
Mihaylova A, Doncheva N, Zlatanova H, et al. Dopaminergic agonist pramipexole improves memory and increases IL-10 production in LPS-challenged rats. Iran J Basic Med Sci 2021; 24(5): 577-85.
[http://dx.doi.org/10.22038/ijbms.2021.50439.11488] [PMID: 34249258]
[24]
Jiang S, Gao H, Yong Y, et al. Effect of pramipexole on inflammatory response in central nervous system of Parkinson’s disease rat model. Arch Med Res 2021. S0188440921001429
[http://dx.doi.org/10.1016/j.arcmed.2021.06.007] [PMID: 34218945]
[25]
Espinosa-Cárdenas R, Arce-Sillas A, Álvarez-Luquin D, et al. Immunomodulatory effect and clinical outcome in Parkinson’s disease patients on levodopa-pramipexole combo therapy: A two-year prospective study. J Neuroimmunol 2020; 347: 577328.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577328] [PMID: 32721557]
[26]
Gendelman HE, Zhang Y, Santamaria P, et al. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson’s disease trial. NPJ Parkinsons Dis 2017; 3(1): 10.
[http://dx.doi.org/10.1038/s41531-017-0013-5] [PMID: 28649610]
[27]
Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992; 43(4): 329-39.
[http://dx.doi.org/10.1007/BF02220605] [PMID: 1451710]
[28]
Greenland JC, Cutting E, Kadyan S, Bond S, Chhabra A, Williams-Gray CH. Azathioprine immunosuppression and disease modification in Parkinson’s disease (AZA-PD): A randomised double-blind placebo-controlled phase II trial protocol. BMJ Open 2020; 10(11): e040527.
[http://dx.doi.org/10.1136/bmjopen-2020-040527] [PMID: 33234645]
[29]
Motyl J. Przykaza Ł Boguszewski PM, Kosson P, Strosznajder JB. Pramipexole and fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018; 135: 139-50.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.023] [PMID: 29481916]
[30]
Churchill MJ, Cantu MA, Kasanga EA, Moore C, Salvatore MF, Meshul CK. Glatiramer acetate reverses motor dysfunction and the decrease in tyrosine hydroxylase levels in a mouse model of Parkinson’s disease. Neuroscience 2019; 414: 8-27.
[http://dx.doi.org/10.1016/j.neuroscience.2019.06.006] [PMID: 31220543]
[31]
Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC. Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 2002; 82(3): 615-24.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00990.x] [PMID: 12153485]
[32]
Quinn LP, Crook B, Hows ME, et al. The PPARγ agonist pioglitazone is effective in the MPTP mouse model of Parkinson’s disease through inhibition of monoamine oxidase B. Br J Pharmacol 2008; 154(1): 226-33.
[http://dx.doi.org/10.1038/bjp.2008.78] [PMID: 18332857]
[33]
Yun SP, Kam TI, Panicker N, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 2018; 24(7): 931-8.
[http://dx.doi.org/10.1038/s41591-018-0051-5] [PMID: 29892066]
[34]
NINDS Exploratory Trials. in Parkinson Disease (NET-PD) FS-ZONE Investigators. Pioglitazone in early Parkinson’s disease: A phase 2, multicentre, double-blind, randomised trial. Lancet Neurol 2015; 14(8): 795-803.
[http://dx.doi.org/10.1016/S1474-4422(15)00144-1] [PMID: 26116315]
[35]
Magistrelli L, Comi C. Beta2-adrenoceptor agonists in Parkinson’s disease and other synucleinopathies. J Neuroimmune Pharmacol 2020; 15(1): 74-81.
[http://dx.doi.org/10.1007/s11481-018-09831-0] [PMID: 30617750]
[36]
Cosentino M, Fietta AM, Ferrari M, et al. Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 2007; 109(2): 632-42.
[http://dx.doi.org/10.1182/blood-2006-01-028423] [PMID: 16985181]
[37]
Uc EY, Lambert CP, Harik SI, Rodnitzky RL, Evans WJ. Albuterol improves response to levodopa and increases skeletal muscle mass in patients with fluctuating Parkinson disease. Clin Neuropharmacol 2003; 26(4): 207-12.
[http://dx.doi.org/10.1097/00002826-200307000-00011] [PMID: 12897642]
[38]
Hishida R, Kurahashi K, Narita S, Baba T, Matsunaga M. “Wearing-off” and β2-adrenoceptor agonist in Parkinson’s disease. Lancet 1992; 339(8797): 870.
[http://dx.doi.org/10.1016/0140-6736(92)90313-R] [PMID: 1347877]
[39]
Mittal S, Bjørnevik K, Im DS, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science 2017; 357(6354): 891-8.
[http://dx.doi.org/10.1126/science.aaf3934] [PMID: 28860381]
[40]
Gronich N, Abernethy DR, Auriel E, Lavi I, Rennert G, Saliba W. B2-Adrenoceptor agonists and antagonists and risk of Parkinson’s disease: B2-adrenoceptor use and risk of PD. Mov Disord 2018; 33: 1465-71.
[http://dx.doi.org/10.1002/mds.108] [PMID: 30311974]
[41]
Moustafa SA, Mohamed S, Dawood A, et al. Gut brain axis: An insight into microbiota role in Parkinson’s disease. Metab Brain Dis 2021; 36(7): 1545-57.
[http://dx.doi.org/10.1007/s11011-021-00808-2] [PMID: 34370175]
[42]
Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30(3): 350-8.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[43]
Magistrelli L, Amoruso A, Mogna L, et al. Probiotics may have beneficial effects in Parkinson’s disease: In vitro evidence. Front Immunol 2019; 10: 969.
[http://dx.doi.org/10.3389/fimmu.2019.00969] [PMID: 31134068]
[44]
Su CM, Kung CT, Chen FC, et al. Manifestations and outcomes of patients with Parkinson’s Disease and serious infection in the emergency department. BioMed Res Int 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/6014896] [PMID: 30417011]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy