Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Implication of Glial Metabotropic Glutamate Receptors in Alzheimer’s Disease

Author(s): Izabella B.Q. de Lima and Fabíola M. Ribeiro*

Volume 21, Issue 2, 2023

Published on: 12 May, 2022

Page: [164 - 182] Pages: 19

DOI: 10.2174/1570159X20666211223140303

Price: $65

conference banner
Abstract

Alzheimer’s disease (AD) was first identified more than 100 years ago, yet aspects pertaining to its origin and the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease-modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning, as well as its role in pathological conditions, remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD, and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. AD-related alterations in Ca2+ signalling, APP processing, and Aβ load, as well as AD-related neurodegeneration, are influenced by glial mGluRs. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review, we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.

Keywords: Alzheimer’s disease, metabotropic glutamate receptors, astrocytes, microglia, neurodegeneration, calcium signalling, amyloid-beta.

Graphical Abstract
[1]
Patterson, C. World Alzheimer Report 2018;; Alzheimer’s Disease International. (ADI), 2018, pp. 1-48.
[2]
(WHO), W.H.O. Global action plan on the public health response to dementia 2017-2025; Geneva World Health Organization, 2017, p. 52.
[3]
Alzheimer, A.; Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin. Anat., 1995, 8(6), 429-431.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[4]
2013 Alzheimer’s disease facts and figures. Alzheimers Dement., 2013, 9(2), 208-245.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003] [PMID: 23507120]
[5]
van der Linde, R.M.; Dening, T.; Stephan, B.C.; Prina, A.M.; Evans, E.; Brayne, C. Longitudinal course of behavioural and psychological symptoms of dementia: systematic review. Br. J. Psychiatry, 2016, 209(5), 366-377.
[http://dx.doi.org/10.1192/bjp.bp.114.148403] [PMID: 27491532]
[6]
Deardorff, W.J.; Grossberg, G.T. Behavioral and psychological symptoms in Alzheimer’s dementia and vascular dementia. Handb. Clin. Neurol., 2019, 165, 5-32.
[http://dx.doi.org/10.1016/B978-0-444-64012-3.00002-2] [PMID: 31727229]
[7]
López, O.L.; Dekosky, S.T. Clinical symptoms in Alzheimer’s disease. Handb. Clin. Neurol., 2008, 89, 207-216.
[http://dx.doi.org/10.1016/S0072-9752(07)01219-5] [PMID: 18631745]
[8]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[9]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245] [PMID: 3159021]
[10]
Masters, C.L.; Multhaup, G.; Simms, G.; Pottgiesser, J.; Martins, R.N.; Beyreuther, K. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J., 1985, 4(11), 2757-2763.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb04000.x] [PMID: 4065091]
[11]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[12]
Kosik, K.S.; Joachim, C.L.; Selkoe, D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4044-4048.
[http://dx.doi.org/10.1073/pnas.83.11.4044] [PMID: 2424016]
[13]
Grundke-Iqbal, I.; Iqbal, K.; Quinlan, M.; Tung, Y.C.; Zaidi, M.S.; Wisniewski, H.M. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem., 1986, 261(13), 6084-6089.
[http://dx.doi.org/10.1016/S0021-9258(17)38495-8] [PMID: 3084478]
[14]
Nukina, N.; Ihara, Y. One of the antigenic determinants of paired helical filaments is related to tau protein. J. Biochem., 1986, 99(5), 1541-1544.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a135625] [PMID: 2423512]
[15]
Shefer, V.F. Absolute number of neurons and thickness of the cerebral cortex during aging, senile and vascular dementia, and Pick’s and Alzheimer’s diseases. Neurosci. Behav. Physiol., 1973, 6(4), 319-324.
[http://dx.doi.org/10.1007/BF01182672] [PMID: 4781784]
[16]
Najlerahim, A.; Bowen, D.M. Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathol., 1988, 75(5), 509-512.
[http://dx.doi.org/10.1007/BF00687139] [PMID: 3376753]
[17]
Hubbard, B.M.; Anderson, J.M. A quantitative study of cerebral atrophy in old age and senile dementia. J. Neurol. Sci., 1981, 50(1), 135-145.
[http://dx.doi.org/10.1016/0022-510X(81)90048-4] [PMID: 7229656]
[18]
Davies, C.A.; Mann, D.M.; Sumpter, P.Q.; Yates, P.O. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci., 1987, 78(2), 151-164.
[http://dx.doi.org/10.1016/0022-510X(87)90057-8] [PMID: 3572454]
[19]
Whitwell, J.L.; Przybelski, S.A.; Weigand, S.D.; Knopman, D.S.; Boeve, B.F.; Petersen, R.C.; Jack, C.R. Jr 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain, 2007, 130(Pt 7), 1777-1786.
[http://dx.doi.org/10.1093/brain/awm112] [PMID: 17533169]
[20]
Knafo, S.; Alonso-Nanclares, L.; Gonzalez-Soriano, J.; Merino-Serrais, P.; Fernaud-Espinosa, I.; Ferrer, I.; DeFelipe, J. Widespread changes in dendritic spines in a model of Alzheimer’s disease. Cereb. Cortex, 2009, 19(3), 586-592.
[http://dx.doi.org/10.1093/cercor/bhn111] [PMID: 18632740]
[21]
Kandimalla, R.; Manczak, M.; Yin, X.; Wang, R.; Reddy, P.H. Hippocampal phosphorylated tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum. Mol. Genet., 2018, 27(1), 30-40.
[http://dx.doi.org/10.1093/hmg/ddx381] [PMID: 29040533]
[22]
Hamelin, L.; Lagarde, J.; Dorothée, G.; Potier, M.C.; Corlier, F.; Kuhnast, B.; Caillé, F.; Dubois, B.; Fillon, L.; Chupin, M.; Bottlaender, M.; Sarazin, M. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain, 2018, 141(6), 1855-1870.
[http://dx.doi.org/10.1093/brain/awy079] [PMID: 29608645]
[23]
Dani, M.; Wood, M.; Mizoguchi, R.; Fan, Z.; Walker, Z.; Morgan, R.; Hinz, R.; Biju, M.; Kuruvilla, T.; Brooks, D.J.; Edison, P. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain, 2018, 141(9), 2740-2754.
[http://dx.doi.org/10.1093/brain/awy188] [PMID: 30052812]
[24]
Xiang, Z.; Haroutunian, V.; Ho, L.; Purohit, D.; Pasinetti, G.M. Microglia activation in the brain as inflammatory biomarker of Alzheimer’s disease neuropathology and clinical dementia. Dis. Markers, 2006, 22(1-2), 95-102.
[http://dx.doi.org/10.1155/2006/276239] [PMID: 16410654]
[25]
Olabarria, M.; Noristani, H.N.; Verkhratsky, A.; Rodríguez, J.J. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia, 2010, 58(7), 831-838.
[http://dx.doi.org/10.1002/glia.20967] [PMID: 20140958]
[26]
Scheff, S.W.; Price, D.A.; Schmitt, F.A.; Mufson, E.J. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging, 2006, 27(10), 1372-1384.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.012] [PMID: 16289476]
[27]
Itagaki, S.; McGeer, P.L.; Akiyama, H.; Zhu, S.; Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol., 1989, 24(3), 173-182.
[http://dx.doi.org/10.1016/0165-5728(89)90115-X] [PMID: 2808689]
[28]
Masliah, E.; Mallory, M.; Hansen, L.; DeTeresa, R.; Alford, M.; Terry, R. Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci. Lett., 1994, 174(1), 67-72.
[http://dx.doi.org/10.1016/0304-3940(94)90121-X] [PMID: 7970158]
[29]
Serrano-Pozo, A.; Muzikansky, A.; Gómez-Isla, T.; Growdon, J.H.; Betensky, R.A.; Frosch, M.P.; Hyman, B.T. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2013, 72(6), 462-471.
[http://dx.doi.org/10.1097/NEN.0b013e3182933788] [PMID: 23656989]
[30]
Zhu, X.C.; Tan, L.; Wang, H.F.; Jiang, T.; Cao, L.; Wang, C.; Wang, J.; Tan, C.C.; Meng, X.F.; Yu, J.T. Rate of early onset Alzheimer’s disease: a systematic review and meta-analysis. Ann. Transl. Med., 2015, 3(3), 38.
[PMID: 25815299]
[31]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[32]
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci., 2015, 18(6), 794-799.
[http://dx.doi.org/10.1038/nn.4017] [PMID: 26007212]
[33]
Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325(6106), 733-736.
[http://dx.doi.org/10.1038/325733a0] [PMID: 2881207]
[34]
Sato, Y.; Liu, C.; Wojczyk, B.S.; Kobata, A.; Spitalnik, S.L.; Endo, T. Study of the sugar chains of recombinant human amyloid precursor protein produced by Chinese hamster ovary cells. Biochim. Biophys. Acta, 1999, 1472(1-2), 344-358.
[http://dx.doi.org/10.1016/S0304-4165(99)00140-3] [PMID: 10572956]
[35]
Dyrks, T.; Weidemann, A.; Multhaup, G.; Salbaum, J.M.; Lemaire, H.G.; Kang, J.; Müller-Hill, B.; Masters, C.L.; Beyreuther, K. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer’s disease. EMBO J., 1988, 7(4), 949-957.
[http://dx.doi.org/10.1002/j.1460-2075.1988.tb02900.x] [PMID: 2900137]
[36]
Estus, S.; Golde, T.E.; Kunishita, T.; Blades, D.; Lowery, D.; Eisen, M.; Usiak, M.; Qu, X.M.; Tabira, T.; Greenberg, B.D. Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor. Science, 1992, 255(5045), 726-728.
[http://dx.doi.org/10.1126/science.1738846] [PMID: 1738846]
[37]
Allinson, T.M.; Parkin, E.T.; Turner, A.J.; Hooper, N.M. ADAMs family members as amyloid precursor protein alpha-secretases. J. Neurosci. Res., 2003, 74(3), 342-352.
[http://dx.doi.org/10.1002/jnr.10737] [PMID: 14598310]
[38]
Esch, F.S.; Keim, P.S.; Beattie, E.C.; Blacher, R.W.; Culwell, A.R.; Oltersdorf, T.; McClure, D.; Ward, P.J. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science, 1990, 248(4959), 1122-1124.
[http://dx.doi.org/10.1126/science.2111583] [PMID: 2111583]
[39]
Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[40]
Kimberly, W.T.; Esler, W.P.; Ye, W.; Ostaszewski, B.L.; Gao, J.; Diehl, T.; Selkoe, D.J.; Wolfe, M.S. Notch and the amyloid precursor protein are cleaved by similar gamma-secretase(s). Biochemistry, 2003, 42(1), 137-144.
[http://dx.doi.org/10.1021/bi026888g] [PMID: 12515548]
[41]
Yan, R.; Bienkowski, M.J.; Shuck, M.E.; Miao, H.; Tory, M.C.; Pauley, A.M.; Brashier, J.R.; Stratman, N.C.; Mathews, W.R.; Buhl, A.E.; Carter, D.B.; Tomasselli, A.G.; Parodi, L.A.; Heinrikson, R.L.; Gurney, M.E. Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature, 1999, 402(6761), 533-537.
[http://dx.doi.org/10.1038/990107] [PMID: 10591213]
[42]
Sinha, S.; Anderson, J.P.; Barbour, R.; Basi, G.S.; Caccavello, R.; Davis, D.; Doan, M.; Dovey, H.F.; Frigon, N.; Hong, J.; Jacobson-Croak, K.; Jewett, N.; Keim, P.; Knops, J.; Lieberburg, I.; Power, M.; Tan, H.; Tatsuno, G.; Tung, J.; Schenk, D.; Seubert, P.; Suomensaari, S.M.; Wang, S.; Walker, D.; Zhao, J.; McConlogue, L.; John, V. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 1999, 402(6761), 537-540.
[http://dx.doi.org/10.1038/990114] [PMID: 10591214]
[43]
Yu, G.; Nishimura, M.; Arawaka, S.; Levitan, D.; Zhang, L.; Tandon, A.; Song, Y.Q.; Rogaeva, E.; Chen, F.; Kawarai, T.; Supala, A.; Levesque, L.; Yu, H.; Yang, D.S.; Holmes, E.; Milman, P.; Liang, Y.; Zhang, D.M.; Xu, D.H.; Sato, C.; Rogaev, E.; Smith, M.; Janus, C.; Zhang, Y.; Aebersold, R.; Farrer, L.S.; Sorbi, S.; Bruni, A.; Fraser, P.; St George-Hyslop, P. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature, 2000, 407(6800), 48-54.
[http://dx.doi.org/10.1038/35024009] [PMID: 10993067]
[44]
Francis, R.; McGrath, G.; Zhang, J.; Ruddy, D.A.; Sym, M.; Apfeld, J.; Nicoll, M.; Maxwell, M.; Hai, B.; Ellis, M.C.; Parks, A.L.; Xu, W.; Li, J.; Gurney, M.; Myers, R.L.; Himes, C.S.; Hiebsch, R.; Ruble, C.; Nye, J.S.; Curtis, D. aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev. Cell, 2002, 3(1), 85-97.
[http://dx.doi.org/10.1016/S1534-5807(02)00189-2] [PMID: 12110170]
[45]
De Strooper, B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 2003, 38(1), 9-12.
[http://dx.doi.org/10.1016/S0896-6273(03)00205-8] [PMID: 12691659]
[46]
Kimberly, W.T.; Wolfe, M.S. Identity and function of gamma-secretase. J. Neurosci. Res., 2003, 74(3), 353-360.
[http://dx.doi.org/10.1002/jnr.10736] [PMID: 14598311]
[47]
Hyman, B.T.; Marzloff, K.; Arriagada, P.V. The lack of accumulation of senile plaques or amyloid burden in Alzheimer’s disease suggests a dynamic balance between amyloid deposition and resolution. J. Neuropathol. Exp. Neurol., 1993, 52(6), 594-600.
[http://dx.doi.org/10.1097/00005072-199311000-00006] [PMID: 8229078]
[48]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[49]
Fleisher, A.S.; Chen, K.; Quiroz, Y.T.; Jakimovich, L.J.; Gomez, M.G.; Langois, C.M.; Langbaum, J.B.; Ayutyanont, N.; Roontiva, A.; Thiyyagura, P.; Lee, W.; Mo, H.; Lopez, L.; Moreno, S.; Acosta-Baena, N.; Giraldo, M.; Garcia, G.; Reiman, R.A.; Huentelman, M.J.; Kosik, K.S.; Tariot, P.N.; Lopera, F.; Reiman, E.M. Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional study. Lancet Neurol., 2012, 11(12), 1057-1065.
[http://dx.doi.org/10.1016/S1474-4422(12)70227-2] [PMID: 23137949]
[50]
Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; Ames, D.; Rowe, C.C.; Masters, C.L. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol., 2013, 12(4), 357-367.
[http://dx.doi.org/10.1016/S1474-4422(13)70044-9] [PMID: 23477989]
[51]
Bateman, R.J.; Xiong, C.; Benzinger, T.L.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P.S.; Ghetti, B.; Klunk, W.E.; McDade, E.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Schofield, P.R.; Sperling, R.A.; Salloway, S.; Morris, J.C. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med., 2012, 367(9), 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]
[52]
Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol., 1991, 30(4), 572-580.
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[53]
Terry, R.D. Alzheimer’s disease and the aging brain. J. Geriatr. Psychiatry Neurol., 2006, 19(3), 125-128.
[http://dx.doi.org/10.1177/0891988706291079] [PMID: 16880353]
[54]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[55]
Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA, 1975, 72(5), 1858-1862.
[http://dx.doi.org/10.1073/pnas.72.5.1858] [PMID: 1057175]
[56]
Kellogg, E.H.; Hejab, N.M.A.; Poepsel, S.; Downing, K.H.; DiMaio, F.; Nogales, E. Near-atomic model of microtubule-tau interactions. Science, 2018, 360(6394), 1242-1246.
[http://dx.doi.org/10.1126/science.aat1780] [PMID: 29748322]
[57]
Witman, G.B.; Cleveland, D.W.; Weingarten, M.D.; Kirschner, M.W. Tubulin requires tau for growth onto microtubule initiating sites. Proc. Natl. Acad. Sci. USA, 1976, 73(11), 4070-4074.
[http://dx.doi.org/10.1073/pnas.73.11.4070] [PMID: 1069293]
[58]
Kadavath, H.; Hofele, R.V.; Biernat, J.; Kumar, S.; Tepper, K.; Urlaub, H.; Mandelkow, E.; Zweckstetter, M. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc. Natl. Acad. Sci. USA, 2015, 112(24), 7501-7506.
[http://dx.doi.org/10.1073/pnas.1504081112] [PMID: 26034266]
[59]
Tapia-Rojas, C.; Cabezas-Opazo, F.; Deaton, C.A.; Vergara, E.H.; Johnson, G.V.W.; Quintanilla, R.A. It’s all about tau. Prog. Neurobiol., 2019, 175, 54-76.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.005] [PMID: 30605723]
[60]
Pooler, A.M.; Usardi, A.; Evans, C.J.; Philpott, K.L.; Noble, W.; Hanger, D.P. Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiol. Aging, 2012, 33(2), 431.e27-438.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.01.005] [PMID: 21388709]
[61]
Biernat, J.; Mandelkow, E.M. The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. Mol. Biol. Cell, 1999, 10(3), 727-740.
[http://dx.doi.org/10.1091/mbc.10.3.727] [PMID: 10069814]
[62]
Sultan, A.; Nesslany, F.; Violet, M.; Bégard, S.; Loyens, A.; Talahari, S.; Mansuroglu, Z.; Marzin, D.; Sergeant, N.; Humez, S.; Colin, M.; Bonnefoy, E.; Buée, L.; Galas, M.C. Nuclear tau, a key player in neuronal DNA protection. J. Biol. Chem., 2011, 286(6), 4566-4575.
[http://dx.doi.org/10.1074/jbc.M110.199976] [PMID: 21131359]
[63]
Wood, J.G.; Mirra, S.S.; Pollock, N.J.; Binder, L.I. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl. Acad. Sci. USA, 1986, 83(11), 4040-4043.
[http://dx.doi.org/10.1073/pnas.83.11.4040] [PMID: 2424015]
[64]
Götz, J.; Chen, F.; van Dorpe, J.; Nitsch, R.M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science, 2001, 293(5534), 1491-1495.
[http://dx.doi.org/10.1126/science.1062097] [PMID: 11520988]
[65]
Lewis, J.; Dickson, D.W.; Lin, W.L.; Chisholm, L.; Corral, A.; Jones, G.; Yen, S.H.; Sahara, N.; Skipper, L.; Yager, D.; Eckman, C.; Hardy, J.; Hutton, M.; McGowan, E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science, 2001, 293(5534), 1487-1491.
[http://dx.doi.org/10.1126/science.1058189] [PMID: 11520987]
[66]
Oddo, S.; Billings, L.; Kesslak, J.P.; Cribbs, D.H.; LaFerla, F.M. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron, 2004, 43(3), 321-332.
[http://dx.doi.org/10.1016/j.neuron.2004.07.003] [PMID: 15294141]
[67]
Roberson, E.D.; Scearce-Levie, K.; Palop, J.J.; Yan, F.; Cheng, I.H.; Wu, T.; Gerstein, H.; Yu, G.Q.; Mucke, L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science, 2007, 316(5825), 750-754.
[http://dx.doi.org/10.1126/science.1141736] [PMID: 17478722]
[68]
Um, J.W.; Kaufman, A.C.; Kostylev, M.; Heiss, J.K.; Stagi, M.; Takahashi, H.; Kerrisk, M.E.; Vortmeyer, A.; Wisniewski, T.; Koleske, A.J.; Gunther, E.C.; Nygaard, H.B.; Strittmatter, S.M. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron, 2013, 79(5), 887-902.
[http://dx.doi.org/10.1016/j.neuron.2013.06.036] [PMID: 24012003]
[69]
Laurén, J.; Gimbel, D.A.; Nygaard, H.B.; Gilbert, J.W.; Strittmatter, S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 2009, 457(7233), 1128-1132.
[http://dx.doi.org/10.1038/nature07761] [PMID: 19242475]
[70]
Um, J.W.; Nygaard, H.B.; Heiss, J.K.; Kostylev, M.A.; Stagi, M.; Vortmeyer, A.; Wisniewski, T.; Gunther, E.C.; Strittmatter, S.M. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci., 2012, 15(9), 1227-1235.
[http://dx.doi.org/10.1038/nn.3178] [PMID: 22820466]
[71]
De Felice, F.G.; Velasco, P.T.; Lambert, M.P.; Viola, K.; Fernandez, S.J.; Ferreira, S.T.; Klein, W.L. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J. Biol. Chem., 2007, 282(15), 11590-11601.
[http://dx.doi.org/10.1074/jbc.M607483200] [PMID: 17308309]
[72]
Ittner, L.M.; Ke, Y.D.; Delerue, F.; Bi, M.; Gladbach, A.; van Eersel, J.; Wölfing, H.; Chieng, B.C.; Christie, M.J.; Napier, I.A.; Eckert, A.; Staufenbiel, M.; Hardeman, E.; Götz, J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 2010, 142(3), 387-397.
[http://dx.doi.org/10.1016/j.cell.2010.06.036] [PMID: 20655099]
[73]
Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[74]
Zhang, Z.W.; Peterson, M.; Liu, H. Essential role of postsynaptic NMDA receptors in developmental refinement of excitatory synapses. Proc. Natl. Acad. Sci. USA, 2013, 110(3), 1095-1100.
[http://dx.doi.org/10.1073/pnas.1212971110] [PMID: 23277569]
[75]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[76]
Sze, C.I.; Troncoso, J.C.; Kawas, C.; Mouton, P.; Price, D.L.; Martin, L.J. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J. Neuropathol. Exp. Neurol., 1997, 56(8), 933-944.
[http://dx.doi.org/10.1097/00005072-199708000-00011] [PMID: 9258263]
[77]
Counts, S.E.; Nadeem, M.; Lad, S.P.; Wuu, J.; Mufson, E.J. Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment. J. Neuropathol. Exp. Neurol., 2006, 65(6), 592-601.
[http://dx.doi.org/10.1097/00005072-200606000-00007] [PMID: 16783169]
[78]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[79]
Bie, B.; Wu, J.; Foss, J.F.; Naguib, M. Activation of mGluR1 mediates C1q-dependent microglial phagocytosis of glutamatergic synapses in Alzheimer’s rodent models. Mol. Neurobiol., 2019, 56(8), 5568-5585.
[http://dx.doi.org/10.1007/s12035-019-1467-8] [PMID: 30652266]
[80]
Ohgi, Y.; Futamura, T.; Hashimoto, K. Glutamate signaling in synaptogenesis and NMDA receptors as potential therapeutic targets for psychiatric disorders. Curr. Mol. Med., 2015, 15(3), 206-221.
[http://dx.doi.org/10.2174/1566524015666150330143008] [PMID: 25817855]
[81]
Nakanishi, S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron, 1994, 13(5), 1031-1037.
[http://dx.doi.org/10.1016/0896-6273(94)90043-4] [PMID: 7946343]
[82]
Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[83]
Byrnes, K.R.; Stoica, B.; Loane, D.J.; Riccio, A.; Davis, M.I.; Faden, A.I. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia, 2009, 57(5), 550-560.
[http://dx.doi.org/10.1002/glia.20783] [PMID: 18816644]
[84]
Loane, D.J.; Stoica, B.A.; Pajoohesh-Ganji, A.; Byrnes, K.R.; Faden, A.I. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J. Biol. Chem., 2009, 284(23), 15629-15639.
[http://dx.doi.org/10.1074/jbc.M806139200] [PMID: 19364772]
[85]
Loane, D.J.; Stoica, B.A.; Byrnes, K.R.; Jeong, W.; Faden, A.I. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J. Neurotrauma, 2013, 30(5), 403-412.
[http://dx.doi.org/10.1089/neu.2012.2589] [PMID: 23199080]
[86]
Aronica, E.; Catania, M.V.; Geurts, J.; Yankaya, B.; Troost, D. Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience, 2001, 105(2), 509-520.
[http://dx.doi.org/10.1016/S0306-4522(01)00181-6] [PMID: 11672616]
[87]
Anneser, J.M.; Chahli, C.; Ince, P.G.; Borasio, G.D.; Shaw, P.J. Glial proliferation and metabotropic glutamate receptor expression in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2004, 63(8), 831-840.
[http://dx.doi.org/10.1093/jnen/63.8.831] [PMID: 15330338]
[88]
Silva, G.A.; Theriault, E.; Mills, L.R.; Pennefather, P.S.; Feeney, C.J. Group I and II metabotropic glutamate receptor expression in cultured rat spinal cord astrocytes. Neurosci. Lett., 1999, 263(2-3), 117-120.
[http://dx.doi.org/10.1016/S0304-3940(99)00145-7] [PMID: 10213149]
[89]
Schools, G.P.; Kimelberg, H.K. mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J. Neurosci. Res., 1999, 58(4), 533-543.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19991115)58:4<533::AID-JNR6>3.0.CO;2-G] [PMID: 10533045]
[90]
Miller, S.; Romano, C.; Cotman, C.W. Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J. Neurosci., 1995, 15(9), 6103-6109.
[http://dx.doi.org/10.1523/JNEUROSCI.15-09-06103.1995] [PMID: 7666194]
[91]
Ciccarelli, R.; Sureda, F.X.; Casabona, G.; Di Iorio, P.; Caruso, A.; Spinella, F.; Condorelli, D.F.; Nicoletti, F.; Caciagli, F. Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and -5 on astrocyte proliferation in culture. Glia, 1997, 21(4), 390-398.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199712)21:4<390::AID-GLIA6>3.0.CO;2-7] [PMID: 9419014]
[92]
Condorelli, D.F.; Dell’Albani, P.; Corsaro, M.; Giuffrida, R.; Caruso, A.; Trovato, S.A.; Spinella, F.; Nicoletti, F.; Albanese, V.; Giuffrida Stella, A.M. Metabotropic glutamate receptor expression in cultured rat astrocytes and human gliomas. Neurochem. Res., 1997, 22(9), 1127-1133.
[http://dx.doi.org/10.1023/A:1027317319166] [PMID: 9251103]
[93]
Cai, Z.; Schools, G.P.; Kimelberg, H.K. Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression. Glia, 2000, 29(1), 70-80.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000101)29:1<70::AID-GLIA7>3.0.CO;2-V] [PMID: 10594924]
[94]
Biber, K.; Laurie, D.J.; Berthele, A.; Sommer, B.; Tölle, T.R.; Gebicke-Härter, P.J.; van Calker, D.; Boddeke, H.W. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J. Neurochem., 1999, 72(4), 1671-1680.
[http://dx.doi.org/10.1046/j.1471-4159.1999.721671.x] [PMID: 10098876]
[95]
Sun, W.; McConnell, E.; Pare, J.F.; Xu, Q.; Chen, M.; Peng, W.; Lovatt, D.; Han, X.; Smith, Y.; Nedergaard, M. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science, 2013, 339(6116), 197-200.
[http://dx.doi.org/10.1126/science.1226740] [PMID: 23307741]
[96]
Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; Deng, S.; Liddelow, S.A.; Zhang, C.; Daneman, R.; Maniatis, T.; Barres, B.A.; Wu, J.Q. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 2014, 34(36), 11929-11947.
[http://dx.doi.org/10.1523/JNEUROSCI.1860-14.2014] [PMID: 25186741]
[97]
van den Pol, A.N. Presynaptic metabotropic glutamate receptors in adult and developing neurons: autoexcitation in the olfactory bulb. J. Comp. Neurol., 1995, 359(2), 253-271.
[http://dx.doi.org/10.1002/cne.903590206] [PMID: 7499528]
[98]
van den Pol, A.N.; Romano, C.; Ghosh, P. Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. J. Comp. Neurol., 1995, 362(1), 134-150.
[http://dx.doi.org/10.1002/cne.903620108] [PMID: 8576426]
[99]
Shrivastava, A.N. Kowalewski, J.M.; Renner, M.; Bousset, L.; Koulakoff, A.; Melki, R.; Giaume, C.; Triller, A. β-amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia, 2013, 61(10), 1673-1686.
[http://dx.doi.org/10.1002/glia.22548] [PMID: 23922225]
[100]
Grolla, A.A.; Sim, J.A.; Lim, D.; Rodriguez, J.J.; Genazzani, A.A.; Verkhratsky, A. Amyloid-β and Alzheimer’s disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis., 2013, 4, e623.
[http://dx.doi.org/10.1038/cddis.2013.145] [PMID: 23661001]
[101]
Casley, C.S.; Lakics, V.; Lee, H.G.; Broad, L.M.; Day, T.A.; Cluett, T.; Smith, M.A.; O’Neill, M.J.; Kingston, A.E. Up-regulation of astrocyte metabotropic glutamate receptor 5 by amyloid-β peptide. Brain Res., 2009, 1260, 65-75.
[http://dx.doi.org/10.1016/j.brainres.2008.12.082] [PMID: 19401173]
[102]
Lim, D.; Iyer, A.; Ronco, V.; Grolla, A.A.; Canonico, P.L.; Aronica, E.; Genazzani, A.A. Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia, 2013, 61(7), 1134-1145.
[http://dx.doi.org/10.1002/glia.22502] [PMID: 23616440]
[103]
Grolla, A.A. Fakhfouri, G.; Balzaretti, G.; Marcello, E.; Gardoni, F.; Canonico, P.L.; DiLuca, M.; Genazzani, A.A.; Lim, D. Aβ leads to Ca2⁺ signaling alterations and transcriptional changes in glial cells. Neurobiol. Aging, 2013, 34(2), 511-522.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.05.005] [PMID: 22673114]
[104]
Ronco, V.; Grolla, A.A.; Glasnov, T.N.; Canonico, P.L.; Verkhratsky, A.; Genazzani, A.A.; Lim, D. Differential deregulation of astrocytic calcium signalling by amyloid-β TNFα IL-1β and LPS. Cell Calcium, 2014, 55(4), 219-229.
[http://dx.doi.org/10.1016/j.ceca.2014.02.016] [PMID: 24656753]
[105]
Taylor, D.L.; Diemel, L.T.; Cuzner, M.L.; Pocock, J.M. Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J. Neurochem., 2002, 82(5), 1179-1191.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01062.x] [PMID: 12358765]
[106]
Durand, D.; Carniglia, L.; Turati, J.; Ramírez, D.; Saba, J.; Caruso, C.; Lasaga, M. Amyloid-beta neurotoxicity and clearance are both regulated by glial group II metabotropic glutamate receptors. Neuropharmacology, 2017, 123, 274-286.
[http://dx.doi.org/10.1016/j.neuropharm.2017.05.008] [PMID: 28495373]
[107]
Taylor, D.L.; Jones, F.; Kubota, E.S.; Pocock, J.M. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J. Neurosci., 2005, 25(11), 2952-2964.
[http://dx.doi.org/10.1523/JNEUROSCI.4456-04.2005] [PMID: 15772355]
[108]
Ohishi, H.; Shigemoto, R.; Nakanishi, S.; Mizuno, N. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol., 1993, 335(2), 252-266.
[http://dx.doi.org/10.1002/cne.903350209] [PMID: 8227517]
[109]
Mudo, G.; Trovato-Salinaro, A.; Caniglia, G.; Cheng, Q.; Condorelli, D.F. Cellular localization of mGluR3 and mGluR5 mRNAs in normal and injured rat brain. Brain Res., 2007, 1149, 1-13.
[http://dx.doi.org/10.1016/j.brainres.2007.02.041] [PMID: 17428452]
[110]
Mineff, E.; Valtschanoff, J. Metabotropic glutamate receptors 2 and 3 expressed by astrocytes in rat ventrobasal thalamus. Neurosci. Lett., 1999, 270(2), 95-98.
[http://dx.doi.org/10.1016/S0304-3940(99)00484-X] [PMID: 10462106]
[111]
Durand, D.; Carniglia, L.; Beauquis, J.; Caruso, C.; Saravia, F.; Lasaga, M. Astroglial mGlu3 receptors promote alpha-secretase-mediated amyloid precursor protein cleavage. Neuropharmacology, 2014, 79, 180-189.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.015] [PMID: 24291464]
[112]
Durand, D.; Turati, J.; Rudi, M.J.; Ramírez, D.; Saba, J.; Caruso, C.; Carniglia, L.; von Bernhardi, R.; Lasaga, M. Unraveling the β-amyloid clearance by astrocytes: Involvement of metabotropic glutamate receptor 3, sAPPα and class-A scavenger receptor. Neurochem. Int., 2019, 131, 104547.
[http://dx.doi.org/10.1016/j.neuint.2019.104547] [PMID: 31536785]
[113]
Caraci, F.; Molinaro, G.; Battaglia, G.; Giuffrida, M.L.; Riozzi, B.; Traficante, A.; Bruno, V.; Cannella, M.; Merlo, S.; Wang, X.; Heinz, B.A.; Nisenbaum, E.S.; Britton, T.C.; Drago, F.; Sortino, M.A.; Copani, A.; Nicoletti, F. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol. Pharmacol., 2011, 79(3), 618-626.
[http://dx.doi.org/10.1124/mol.110.067488] [PMID: 21159998]
[114]
Besong, G.; Battaglia, G.; D’Onofrio, M.; Di Marco, R.; Ngomba, R.T.; Storto, M.; Castiglione, M.; Mangano, K.; Busceti, C.L.; Nicoletti, F.R.; Bacon, K.; Tusche, M.; Valenti, O.; Conn, P.J.; Bruno, V.; Nicoletti, F. Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures. J. Neurosci., 2002, 22(13), 5403-5411.
[http://dx.doi.org/10.1523/JNEUROSCI.22-13-05403.2002] [PMID: 12097492]
[115]
Taylor, D.L.; Diemel, L.T.; Pocock, J.M. Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J. Neurosci., 2003, 23(6), 2150-2160.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02150.2003] [PMID: 12657674]
[116]
Riedel, G.; Platt, B.; Micheau, J. Glutamate receptor function in learning and memory. Behav. Brain Res., 2003, 140(1-2), 1-47.
[http://dx.doi.org/10.1016/S0166-4328(02)00272-3] [PMID: 12644276]
[117]
Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev., 1999, 51(1), 7-61.
[PMID: 10049997]
[118]
Conn, P.J.; Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37, 205-237.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.205] [PMID: 9131252]
[119]
Nakanishi, S. The molecular diversity of glutamate receptors. Prog. Clin. Biol. Res., 1994, 390, 85-98.
[PMID: 7724653]
[120]
Niswender, C.M.; Conn, P.J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol., 2010, 50, 295-322.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145533] [PMID: 20055706]
[121]
Pin, J.P.; Galvez, T.; Prézeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther., 2003, 98(3), 325-354.
[http://dx.doi.org/10.1016/S0163-7258(03)00038-X] [PMID: 12782243]
[122]
Gerber, U.; Gee, C.E.; Benquet, P. Metabotropic glutamate receptors: intracellular signaling pathways. Curr. Opin. Pharmacol., 2007, 7(1), 56-61.
[http://dx.doi.org/10.1016/j.coph.2006.08.008] [PMID: 17055336]
[123]
Hermans, E.; Challiss, R.A. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem. J., 2001, 359(Pt 3), 465-484.
[http://dx.doi.org/10.1042/bj3590465] [PMID: 11672421]
[124]
Lu, W.Y.; Xiong, Z.G.; Lei, S.; Orser, B.A.; Dudek, E.; Browning, M.D.; MacDonald, J.F. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci., 1999, 2(4), 331-338.
[http://dx.doi.org/10.1038/7243] [PMID: 10204539]
[125]
Ran, I.; Laplante, I.; Bourgeois, C.; Pépin, J.; Lacaille, P.; Costa-Mattioli, M.; Pelletier, J.; Sonenberg, N.; Lacaille, J.C. Persistent transcription- and translation-dependent long-term potentiation induced by mGluR1 in hippocampal interneurons. J. Neurosci., 2009, 29(17), 5605-5615.
[http://dx.doi.org/10.1523/JNEUROSCI.5355-08.2009] [PMID: 19403827]
[126]
Gil-Sanz, C.; Delgado-García, J.M.; Fairén, A.; Gruart, A. Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cereb. Cortex, 2008, 18(7), 1653-1663.
[http://dx.doi.org/10.1093/cercor/bhm193] [PMID: 18024992]
[127]
Aiba, A.; Chen, C.; Herrup, K.; Rosenmund, C.; Stevens, C.F.; Tonegawa, S. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell, 1994, 79(2), 365-375.
[http://dx.doi.org/10.1016/0092-8674(94)90204-6] [PMID: 7954802]
[128]
Mannaioni, G.; Marino, M.J.; Valenti, O.; Traynelis, S.F.; Conn, P.J. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J. Neurosci., 2001, 21(16), 5925-5934.
[http://dx.doi.org/10.1523/JNEUROSCI.21-16-05925.2001] [PMID: 11487615]
[129]
Wang, H.; Zhuo, M. Group I metabotropic glutamate receptor-mediated gene transcription and implications for synaptic plasticity and diseases. Front. Pharmacol., 2012, 3, 189.
[http://dx.doi.org/10.3389/fphar.2012.00189] [PMID: 23125836]
[130]
Rong, R.; Ahn, J.Y.; Huang, H.; Nagata, E.; Kalman, D.; Kapp, J.A.; Tu, J.; Worley, P.F.; Snyder, S.H.; Ye, K. PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis. Nat. Neurosci., 2003, 6(11), 1153-1161.
[http://dx.doi.org/10.1038/nn1134] [PMID: 14528310]
[131]
Eng, A.G.; Kelver, D.A.; Hedrick, T.P.; Swanson, G.T. Transduction of group I mGluR-mediated synaptic plasticity by β-arrestin2 signalling. Nat. Commun., 2016, 7, 13571.
[http://dx.doi.org/10.1038/ncomms13571] [PMID: 27886171]
[132]
Ribeiro, F.M.; Vieira, L.B.; Pires, R.G.; Olmo, R.P.; Ferguson, S.S. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol. Res., 2017, 115, 179-191.
[http://dx.doi.org/10.1016/j.phrs.2016.11.013] [PMID: 27872019]
[133]
Baude, A.; Nusser, Z.; Roberts, J.D.; Mulvihill, E.; McIlhinney, R.A.; Somogyi, P. The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron, 1993, 11(4), 771-787.
[http://dx.doi.org/10.1016/0896-6273(93)90086-7] [PMID: 8104433]
[134]
Lujan, R.; Nusser, Z.; Roberts, J.D.; Shigemoto, R.; Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci., 1996, 8(7), 1488-1500.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01611.x] [PMID: 8758956]
[135]
Martin, L.J.; Blackstone, C.D.; Huganir, R.L.; Price, D.L. Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron, 1992, 9(2), 259-270.
[http://dx.doi.org/10.1016/0896-6273(92)90165-A] [PMID: 1323311]
[136]
Romano, C.; Sesma, M.A.; McDonald, C.T.; O’Malley, K.; Van den Pol, A.N.; Olney, J.W. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J. Comp. Neurol., 1995, 355(3), 455-469.
[http://dx.doi.org/10.1002/cne.903550310] [PMID: 7636025]
[137]
Shigemoto, R.; Kinoshita, A.; Wada, E.; Nomura, S.; Ohishi, H.; Takada, M.; Flor, P.J.; Neki, A.; Abe, T.; Nakanishi, S.; Mizuno, N. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci., 1997, 17(19), 7503-7522.
[http://dx.doi.org/10.1523/JNEUROSCI.17-19-07503.1997] [PMID: 9295396]
[138]
Shigemoto, R.; Nomura, S.; Ohishi, H.; Sugihara, H.; Nakanishi, S.; Mizuno, N. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci. Lett., 1993, 163(1), 53-57.
[http://dx.doi.org/10.1016/0304-3940(93)90227-C] [PMID: 8295733]
[139]
Geurts, J.J.; Wolswijk, G.; Bö, L.; van der Valk, P.; Polman, C.H.; Troost, D.; Aronica, E. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain, 2003, 126(Pt 8), 1755-1766.
[http://dx.doi.org/10.1093/brain/awg179] [PMID: 12805104]
[140]
Gwak, Y.S.; Hulsebosch, C.E. Upregulation of Group I metabotropic glutamate receptors in neurons and astrocytes in the dorsal horn following spinal cord injury. Exp. Neurol., 2005, 195(1), 236-243.
[http://dx.doi.org/10.1016/j.expneurol.2005.05.012] [PMID: 16004983]
[141]
Iyer, A.M.; van Scheppingen, J.; Milenkovic, I.; Anink, J.J.; Lim, D.; Genazzani, A.A.; Adle-Biassette, H.; Kovacs, G.G.; Aronica, E. Metabotropic glutamate receptor 5 in Down’s syndrome hippocampus during development: increased expression in astrocytes. Curr. Alzheimer Res., 2014, 11(7), 694-705.
[http://dx.doi.org/10.2174/1567205011666140812115423] [PMID: 25115540]
[142]
Pasti, L.; Volterra, A.; Pozzan, T.; Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci., 1997, 17(20), 7817-7830.
[http://dx.doi.org/10.1523/JNEUROSCI.17-20-07817.1997] [PMID: 9315902]
[143]
Paquet, M.; Ribeiro, F.M.; Guadagno, J.; Esseltine, J.L.; Ferguson, S.S.; Cregan, S.P. Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis. Mol. Brain, 2013, 6, 9.
[http://dx.doi.org/10.1186/1756-6606-6-9] [PMID: 23406666]
[144]
Servitja, J.M.; Masgrau, R.; Sarri, E.; Picatoste, F. Group I metabotropic glutamate receptors mediate phospholipase D stimulation in rat cultured astrocytes. J. Neurochem., 1999, 72(4), 1441-1447.
[http://dx.doi.org/10.1046/j.1471-4159.1999.721441.x] [PMID: 10098847]
[145]
Peavy, R.D.; Conn, P.J. Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. J. Neurochem., 1998, 71(2), 603-612.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71020603.x] [PMID: 9681450]
[146]
Schoepp, D.D. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther., 2001, 299(1), 12-20.
[PMID: 11561058]
[147]
Sharon, D.; Vorobiov, D.; Dascal, N. Positive and negative coupling of the metabotropic glutamate receptors to a G protein-activated K+ channel, GIRK, in Xenopus oocytes. J. Gen. Physiol., 1997, 109(4), 477-490.
[http://dx.doi.org/10.1085/jgp.109.4.477] [PMID: 9101406]
[148]
Fiore, R.S.; Murphy, T.H.; Sanghera, J.S.; Pelech, S.L.; Baraban, J.M. Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. J. Neurochem., 1993, 61(5), 1626-1633.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb09796.x] [PMID: 7693864]
[149]
Bruno, V.; Battaglia, G.; Casabona, G.; Copani, A.; Caciagli, F.; Nicoletti, F. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J. Neurosci., 1998, 18(23), 9594-9600.
[http://dx.doi.org/10.1523/JNEUROSCI.18-23-09594.1998] [PMID: 9822720]
[150]
D’Onofrio, M.; Cuomo, L.; Battaglia, G.; Ngomba, R.T.; Storto, M.; Kingston, A.E.; Orzi, F.; De Blasi, A.; Di Iorio, P.; Nicoletti, F.; Bruno, V. Neuroprotection mediated by glial group-II metabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways. J. Neurochem., 2001, 78(3), 435-445.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00435.x] [PMID: 11483646]
[151]
Aronica, E.; Gorter, J.A.; Ijlst-Keizers, H.; Rozemuller, A.J.; Yankaya, B.; Leenstra, S.; Troost, D. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur. J. Neurosci., 2003, 17(10), 2106-2118.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02657.x] [PMID: 12786977]
[152]
Ciccarelli, R.; D’Alimonte, I.; Ballerini, P.; D’Auro, M.; Nargi, E.; Buccella, S.; Di Iorio, P.; Bruno, V.; Nicoletti, F.; Caciagli, F. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol. Pharmacol., 2007, 71(5), 1369-1380.
[http://dx.doi.org/10.1124/mol.106.031617] [PMID: 17293559]
[153]
Gegelashvili, G.; Dehnes, Y.; Danbolt, N.C.; Schousboe, A. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem. Int., 2000, 37(2-3), 163-170.
[http://dx.doi.org/10.1016/S0197-0186(00)00019-X] [PMID: 10812201]
[154]
Yao, H.H.; Ding, J.H.; Zhou, F.; Wang, F.; Hu, L.F.; Sun, T.; Hu, G. Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J. Neurochem., 2005, 92(4), 948-961.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02937.x] [PMID: 15686497]
[155]
Zhou, F.; Yao, H.H.; Wu, J.Y.; Yang, Y.J.; Ding, J.H.; Zhang, J.; Hu, G. Activation of Group II/III metabotropic glutamate receptors attenuates LPS-induced astroglial neurotoxicity via promoting glutamate uptake. J. Neurosci. Res., 2006, 84(2), 268-277.
[http://dx.doi.org/10.1002/jnr.20897] [PMID: 16752416]
[156]
Ciccarelli, R.; Di Iorio, P.; Bruno, V.; Battaglia, G.; D’Alimonte, I.; D’Onofrio, M.; Nicoletti, F.; Caciagli, F. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia, 1999, 27(3), 275-281.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199909)27:3<275::AID-GLIA9>3.0.CO;2-0] [PMID: 10457374]
[157]
Matarredona, E.R.; Santiago, M.; Venero, J.L.; Cano, J.; Machado, A. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J. Neurochem., 2001, 76(2), 351-360.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00056.x] [PMID: 11208898]
[158]
Verkhratsky, A. Astroglial calcium signaling in aging and Alzheimer’s disease. Cold Spring Harb. Perspect. Biol., 2019, 11(7), a035188.
[http://dx.doi.org/10.1101/cshperspect.a035188] [PMID: 31110130]
[159]
Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev., 2018, 98(1), 239-389.
[http://dx.doi.org/10.1152/physrev.00042.2016] [PMID: 29351512]
[160]
Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci., 1999, 22(5), 208-215.
[http://dx.doi.org/10.1016/S0166-2236(98)01349-6] [PMID: 10322493]
[161]
Delaney, C.L.; Brenner, M.; Messing, A. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J. Neurosci., 1996, 16(21), 6908-6918.
[http://dx.doi.org/10.1523/JNEUROSCI.16-21-06908.1996] [PMID: 8824329]
[162]
Cui, W.; Allen, N.D.; Skynner, M.; Gusterson, B.; Clark, A.J. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia, 2001, 34(4), 272-282.
[http://dx.doi.org/10.1002/glia.1061] [PMID: 11360300]
[163]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[164]
Nedergaard, M. Neuroscience. Garbage truck of the brain. Science, 2013, 340(6140), 1529-1530.
[http://dx.doi.org/10.1126/science.1240514] [PMID: 23812703]
[165]
Tarasoff-Conway, J.M.; Carare, R.O.; Osorio, R.S.; Glodzik, L.; Butler, T.; Fieremans, E.; Axel, L.; Rusinek, H.; Nicholson, C.; Zlokovic, B.V.; Frangione, B.; Blennow, K.; Ménard, J.; Zetterberg, H.; Wisniewski, T.; de Leon, M.J. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol., 2015, 11(8), 457-470.
[http://dx.doi.org/10.1038/nrneurol.2015.119] [PMID: 26195256]
[166]
Kress, B.T.; Iliff, J.J.; Xia, M.; Wang, M.; Wei, H.S.; Zeppenfeld, D.; Xie, L.; Kang, H.; Xu, Q.; Liew, J.A.; Plog, B.A.; Ding, F.; Deane, R.; Nedergaard, M. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol., 2014, 76(6), 845-861.
[http://dx.doi.org/10.1002/ana.24271] [PMID: 25204284]
[167]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Dewachter, I.; Walter, J.; Klockgether, T.; Van Leuven, F. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflammation, 2005, 2, 22.
[http://dx.doi.org/10.1186/1742-2094-2-22] [PMID: 16212664]
[168]
Yeh, C.Y.; Vadhwana, B.; Verkhratsky, A.; Rodríguez, J.J. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer’s disease. ASN Neuro, 2011, 3(5), 271-279.
[http://dx.doi.org/10.1042/AN20110025] [PMID: 22103264]
[169]
Carter, S.F.; Schöll, M.; Almkvist, O.; Wall, A.; Engler, H.; Långström, B.; Nordberg, A. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J. Nucl. Med., 2012, 53(1), 37-46.
[http://dx.doi.org/10.2967/jnumed.110.087031] [PMID: 22213821]
[170]
Rodriguez-Vieitez, E.; Saint-Aubert, L.; Carter, S.F.; Almkvist, O.; Farid, K.; Schöll, M.; Chiotis, K.; Thordardottir, S.; Graff, C.; Wall, A.; Långström, B.; Nordberg, A. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain, 2016, 139(Pt 3), 922-936.
[http://dx.doi.org/10.1093/brain/awv404] [PMID: 26813969]
[171]
Verkhratsky, A.; Marutle, A.; Rodríguez-Arellano, J.J.; Nordberg, A. Glial Asthenia and Functional Paralysis: A New Perspective on Neurodegeneration and Alzheimer’s Disease. Neuroscientist, 2015, 21(5), 552-568.
[http://dx.doi.org/10.1177/1073858414547132] [PMID: 25125026]
[172]
Jones, V.C.; Atkinson-Dell, R.; Verkhratsky, A.; Mohamet, L. Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis., 2017, 8(3), e2696.
[http://dx.doi.org/10.1038/cddis.2017.89] [PMID: 28333144]
[173]
Yan, P.; Hu, X.; Song, H.; Yin, K.; Bateman, R.J.; Cirrito, J.R.; Xiao, Q.; Hsu, F.F.; Turk, J.W.; Xu, J.; Hsu, C.Y.; Holtzman, D.M.; Lee, J.M. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J. Biol. Chem., 2006, 281(34), 24566-24574.
[http://dx.doi.org/10.1074/jbc.M602440200] [PMID: 16787929]
[174]
Yin, K.J.; Cirrito, J.R.; Yan, P.; Hu, X.; Xiao, Q.; Pan, X.; Bateman, R.; Song, H.; Hsu, F.F.; Turk, J.; Xu, J.; Hsu, C.Y.; Mills, J.C.; Holtzman, D.M.; Lee, J.M. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J. Neurosci., 2006, 26(43), 10939-10948.
[http://dx.doi.org/10.1523/JNEUROSCI.2085-06.2006] [PMID: 17065436]
[175]
Kraft, A.W.; Hu, X.; Yoon, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gil, S.C.; Brown, J.; Wilhelmsson, U.; Restivo, J.L.; Cirrito, J.R.; Holtzman, D.M.; Kim, J.; Pekny, M.; Lee, J.M. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J., 2013, 27(1), 187-198.
[http://dx.doi.org/10.1096/fj.12-208660] [PMID: 23038755]
[176]
Kamphuis, W.; Kooijman, L.; Orre, M.; Stassen, O.; Pekny, M.; Hol, E.M. GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer’s disease. Glia, 2015, 63(6), 1036-1056.
[http://dx.doi.org/10.1002/glia.22800] [PMID: 25731615]
[177]
Li, S.; Mallory, M.; Alford, M.; Tanaka, S.; Masliah, E. Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J. Neuropathol. Exp. Neurol., 1997, 56(8), 901-911.
[http://dx.doi.org/10.1097/00005072-199708000-00008] [PMID: 9258260]
[178]
Jacob, C.P.; Koutsilieri, E.; Bartl, J.; Neuen-Jacob, E.; Arzberger, T.; Zander, N.; Ravid, R.; Roggendorf, W.; Riederer, P.; Grünblatt, E. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J. Alzheimers Dis., 2007, 11(1), 97-116.
[http://dx.doi.org/10.3233/JAD-2007-11113] [PMID: 17361039]
[179]
Hoshi, A.; Tsunoda, A.; Yamamoto, T.; Tada, M.; Kakita, A.; Ugawa, Y. Altered expression of glutamate transporter-1 and water channel protein aquaporin-4 in human temporal cortex with Alzheimer’s disease. Neuropathol. Appl. Neurobiol., 2018, 44(6), 628-638.
[http://dx.doi.org/10.1111/nan.12475] [PMID: 29405337]
[180]
Masliah, E.; Alford, M.; DeTeresa, R.; Mallory, M.; Hansen, L. Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann. Neurol., 1996, 40(5), 759-766.
[http://dx.doi.org/10.1002/ana.410400512] [PMID: 8957017]
[181]
Hefendehl, J.K.; LeDue, J.; Ko, R.W.; Mahler, J.; Murphy, T.H.; MacVicar, B.A. Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nat. Commun., 2016, 7, 13441.
[http://dx.doi.org/10.1038/ncomms13441] [PMID: 27834383]
[182]
Mookherjee, P.; Green, P.S.; Watson, G.S.; Marques, M.A.; Tanaka, K.; Meeker, K.D.; Meabon, J.S.; Li, N.; Zhu, P.; Olson, V.G.; Cook, D.G. GLT-1 loss accelerates cognitive deficit onset in an Alzheimer’s disease animal model. J. Alzheimers Dis., 2011, 26(3), 447-455.
[http://dx.doi.org/10.3233/JAD-2011-110503] [PMID: 21677376]
[183]
Takahashi, K.; Kong, Q.; Lin, Y.; Stouffer, N.; Schulte, D.A.; Lai, L.; Liu, Q.; Chang, L.C.; Dominguez, S.; Xing, X.; Cuny, G.D.; Hodgetts, K.J.; Glicksman, M.A.; Lin, C.L. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J. Exp. Med., 2015, 212(3), 319-332.
[http://dx.doi.org/10.1084/jem.20140413] [PMID: 25711212]
[184]
Kobayashi, E.; Nakano, M.; Kubota, K.; Himuro, N.; Mizoguchi, S.; Chikenji, T.; Otani, M.; Mizue, Y.; Nagaishi, K.; Fujimiya, M. Activated forms of astrocytes with higher GLT-1 expression are associated with cognitive normal subjects with Alzheimer pathology in human brain. Sci. Rep., 2018, 8(1), 1712.
[http://dx.doi.org/10.1038/s41598-018-19442-7] [PMID: 29374250]
[185]
Nimmerjahn, A.; Kirchhoff, F.; Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005, 308(5726), 1314-1318.
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[186]
Stence, N.; Waite, M.; Dailey, M.E. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia, 2001, 33(3), 256-266.
[http://dx.doi.org/10.1002/1098-1136(200103)33:3<256::AID-GLIA1024>3.0.CO;2-J] [PMID: 11241743]
[187]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[188]
Petersen, M.A.; Dailey, M.E. Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia, 2004, 46(2), 195-206.
[http://dx.doi.org/10.1002/glia.10362] [PMID: 15042586]
[189]
Solé-Domènech, S.; Cruz, D.L.; Capetillo-Zarate, E.; Maxfield, F.R. The endocytic pathway in microglia during health, aging and Alzheimer’s disease. Ageing Res. Rev., 2016, 32, 89-103.
[http://dx.doi.org/10.1016/j.arr.2016.07.002] [PMID: 27421577]
[190]
Kettenmann, H.; Hanisch, U.K.; Noda, M.; Verkhratsky, A. Physiology of microglia. Physiol. Rev., 2011, 91(2), 461-553.
[http://dx.doi.org/10.1152/physrev.00011.2010] [PMID: 21527731]
[191]
Parkhurst, C.N.; Yang, G.; Ninan, I.; Savas, J.N.; Yates, J.R., III; Lafaille, J.J.; Hempstead, B.L.; Littman, D.R.; Gan, W.B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell, 2013, 155(7), 1596-1609.
[http://dx.doi.org/10.1016/j.cell.2013.11.030] [PMID: 24360280]
[192]
Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; Ragozzino, D.; Gross, C.T. Synaptic pruning by microglia is necessary for normal brain development. Science, 2011, 333(6048), 1456-1458.
[http://dx.doi.org/10.1126/science.1202529] [PMID: 21778362]
[193]
Marín-Teva, J.L.; Dusart, I.; Colin, C.; Gervais, A.; van Rooijen, N.; Mallat, M. Microglia promote the death of developing Purkinje cells. Neuron, 2004, 41(4), 535-547.
[http://dx.doi.org/10.1016/S0896-6273(04)00069-8] [PMID: 14980203]
[194]
Li, Y.; Du, X.F.; Liu, C.S.; Wen, Z.L.; Du, J.L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell, 2012, 23(6), 1189-1202.
[http://dx.doi.org/10.1016/j.devcel.2012.10.027] [PMID: 23201120]
[195]
Badimon, A.; Strasburger, H.J.; Ayata, P.; Chen, X.; Nair, A.; Ikegami, A.; Hwang, P.; Chan, A.T.; Graves, S.M.; Uweru, J.O.; Ledderose, C.; Kutlu, M.G.; Wheeler, M.A.; Kahan, A.; Ishikawa, M.; Wang, Y.C.; Loh, Y.E.; Jiang, J.X.; Surmeier, D.J.; Robson, S.C.; Junger, W.G.; Sebra, R.; Calipari, E.S.; Kenny, P.J.; Eyo, U.B.; Colonna, M.; Quintana, F.J.; Wake, H.; Gradinaru, V.; Schaefer, A. Negative feedback control of neuronal activity by microglia. Nature, 2020, 586(7829), 417-423.
[http://dx.doi.org/10.1038/s41586-020-2777-8] [PMID: 32999463]
[196]
Streit, W.J.; Sammons, N.W.; Kuhns, A.J.; Sparks, D.L. Dystrophic microglia in the aging human brain. Glia, 2004, 45(2), 208-212.
[http://dx.doi.org/10.1002/glia.10319] [PMID: 14730714]
[197]
Tremblay, M.E.; Zettel, M.L.; Ison, J.R.; Allen, P.D.; Majewska, A.K. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia, 2012, 60(4), 541-558.
[http://dx.doi.org/10.1002/glia.22287] [PMID: 22223464]
[198]
Sharaf, A.; Krieglstein, K.; Spittau, B. Distribution of microglia in the postnatal murine nigrostriatal system. Cell Tissue Res., 2013, 351(3), 373-382.
[http://dx.doi.org/10.1007/s00441-012-1537-y] [PMID: 23250575]
[199]
Spittau, B. Aging microglia-phenotypes, functions and implications for age-related neurodegenerative diseases. Front. Aging Neurosci., 2017, 9, 194.
[http://dx.doi.org/10.3389/fnagi.2017.00194] [PMID: 28659790]
[200]
Combs, C.K.; Karlo, J.C.; Kao, S.C.; Landreth, G.E. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci., 2001, 21(4), 1179-1188.
[http://dx.doi.org/10.1523/JNEUROSCI.21-04-01179.2001] [PMID: 11160388]
[201]
Ii, M.; Sunamoto, M.; Ohnishi, K.; Ichimori, Y. beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res., 1996, 720(1-2), 93-100.
[http://dx.doi.org/10.1016/0006-8993(96)00156-4] [PMID: 8782901]
[202]
McDonald, D.R.; Brunden, K.R.; Landreth, G.E. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci., 1997, 17(7), 2284-2294.
[http://dx.doi.org/10.1523/JNEUROSCI.17-07-02284.1997] [PMID: 9065490]
[203]
Wang, Y.; Ulland, T.K.; Ulrich, J.D.; Song, W.; Tzaferis, J.A.; Hole, J.T.; Yuan, P.; Mahan, T.E.; Shi, Y.; Gilfillan, S.; Cella, M.; Grutzendler, J.; DeMattos, R.B.; Cirrito, J.R.; Holtzman, D.M.; Colonna, M. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med., 2016, 213(5), 667-675.
[http://dx.doi.org/10.1084/jem.20151948] [PMID: 27091843]
[204]
Ransohoff, R.M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci., 2016, 19(8), 987-991.
[http://dx.doi.org/10.1038/nn.4338] [PMID: 27459405]
[205]
Butovsky, O.; Weiner, H.L. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci., 2018, 19(10), 622-635.
[http://dx.doi.org/10.1038/s41583-018-0057-5] [PMID: 30206328]
[206]
Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell, 2017, 169(7), 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[207]
Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993, 261(5123), 921-923.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[208]
Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; Rujescu, D.; Hampel, H.; Giegling, I.; Andreassen, O.A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; Ikram, M.A.; van Duijn, C.M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 107-116.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[209]
Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.; Younkin, S.; Hazrati, L.; Collinge, J.; Pocock, J.; Lashley, T.; Williams, J.; Lambert, J.C.; Amouyel, P.; Goate, A.; Rademakers, R.; Morgan, K.; Powell, J.; St George-Hyslop, P.; Singleton, A.; Hardy, J. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 117-127.
[http://dx.doi.org/10.1056/NEJMoa1211851] [PMID: 23150934]
[210]
Zhao, Y.; Wu, X.; Li, X.; Jiang, L.L.; Gui, X.; Liu, Y.; Sun, Y.; Zhu, B.; Piña-Crespo, J.C.; Zhang, M.; Zhang, N.; Chen, X.; Bu, G.; An, Z.; Huang, T.Y.; Xu, H. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron, 2018, 97(5), 1023-1031.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.01.031] [PMID: 29518356]
[211]
Yeh, F.L.; Wang, Y.; Tom, I.; Gonzalez, L.C.; Sheng, M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron, 2016, 91(2), 328-340.
[http://dx.doi.org/10.1016/j.neuron.2016.06.015] [PMID: 27477018]
[212]
Lee, S.; Varvel, N.H.; Konerth, M.E.; Xu, G.; Cardona, A.E.; Ransohoff, R.M.; Lamb, B.T. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol., 2010, 177(5), 2549-2562.
[http://dx.doi.org/10.2353/ajpath.2010.100265] [PMID: 20864679]
[213]
Paresce, D.M.; Chung, H.; Maxfield, F.R. Slow degradation of aggregates of the Alzheimer’s disease amyloid beta-protein by microglial cells. J. Biol. Chem., 1997, 272(46), 29390-29397.
[http://dx.doi.org/10.1074/jbc.272.46.29390] [PMID: 9361021]
[214]
Simard, A.R.; Soulet, D.; Gowing, G.; Julien, J.P.; Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 2006, 49(4), 489-502.
[http://dx.doi.org/10.1016/j.neuron.2006.01.022] [PMID: 16476660]
[215]
Takata, K.; Kitamura, Y.; Yanagisawa, D.; Morikawa, S.; Morita, M.; Inubushi, T.; Tsuchiya, D.; Chishiro, S.; Saeki, M.; Taniguchi, T.; Shimohama, S.; Tooyama, I. Microglial transplantation increases amyloid-beta clearance in Alzheimer model rats. FEBS Lett., 2007, 581(3), 475-478.
[http://dx.doi.org/10.1016/j.febslet.2007.01.009] [PMID: 17240371]
[216]
Pan, X.D.; Zhu, Y.G.; Lin, N.; Zhang, J.; Ye, Q.Y.; Huang, H.P.; Chen, X.C. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer’s disease. Mol. Neurodegener., 2011, 6, 45.
[http://dx.doi.org/10.1186/1750-1326-6-45] [PMID: 21718498]
[217]
Huang, Y.; Happonen, K.E.; Burrola, P.G.; O’Connor, C.; Hah, N.; Huang, L.; Nimmerjahn, A.; Lemke, G. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol., 2021, 22(5), 586-594.
[http://dx.doi.org/10.1038/s41590-021-00913-5] [PMID: 33859405]
[218]
Montgomery, S.L.; Mastrangelo, M.A.; Habib, D.; Narrow, W.C.; Knowlden, S.A.; Wright, T.W.; Bowers, W.J. Ablation of TNF-RI/RII expression in Alzheimer’s disease mice leads to an unexpected enhancement of pathology: implications for chronic pan-TNF-α suppressive therapeutic strategies in the brain. Am. J. Pathol., 2011, 179(4), 2053-2070.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.001] [PMID: 21835156]
[219]
Chakrabarty, P.; Ceballos-Diaz, C.; Beccard, A.; Janus, C.; Dickson, D.; Golde, T.E.; Das, P. IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J. Immunol., 2010, 184(9), 5333-5343.
[http://dx.doi.org/10.4049/jimmunol.0903382] [PMID: 20368278]
[220]
McAlpine, C.S.; Park, J.; Griciuc, A.; Kim, E.; Choi, S.H.; Iwamoto, Y.; Kiss, M.G.; Christie, K.A.; Vinegoni, C.; Poller, W.C.; Mindur, J.E.; Chan, C.T.; He, S.; Janssen, H.; Wong, L.P.; Downey, J.; Singh, S.; Anzai, A.; Kahles, F.; Jorfi, M.; Feruglio, P.F.; Sadreyev, R.I.; Weissleder, R.; Kleinstiver, B.P.; Nahrendorf, M.; Tanzi, R.E.; Swirski, F.K. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature, 2021, 595(7869), 701-706.
[http://dx.doi.org/10.1038/s41586-021-03734-6] [PMID: 34262178]
[221]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[222]
Glaum, S.R.; Holzwarth, J.A.; Miller, R.J. Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc. Natl. Acad. Sci. USA, 1990, 87(9), 3454-3458.
[http://dx.doi.org/10.1073/pnas.87.9.3454] [PMID: 1970637]
[223]
Cornell-Bell, A.H.; Finkbeiner, S.M.; Cooper, M.S.; Smith, S.J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science, 1990, 247(4941), 470-473.
[http://dx.doi.org/10.1126/science.1967852] [PMID: 1967852]
[224]
Parri, H.R.; Gould, T.M.; Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci., 2001, 4(8), 803-812.
[http://dx.doi.org/10.1038/90507] [PMID: 11477426]
[225]
Wang, X.; Lou, N.; Xu, Q.; Tian, G.F.; Peng, W.G.; Han, X.; Kang, J.; Takano, T.; Nedergaard, M. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci., 2006, 9(6), 816-823.
[http://dx.doi.org/10.1038/nn1703] [PMID: 16699507]
[226]
Charles, A.C.; Merrill, J.E.; Dirksen, E.R.; Sanderson, M.J. Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron, 1991, 6(6), 983-992.
[http://dx.doi.org/10.1016/0896-6273(91)90238-U] [PMID: 1675864]
[227]
Dani, J.W.; Chernjavsky, A.; Smith, S.J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron, 1992, 8(3), 429-440.
[http://dx.doi.org/10.1016/0896-6273(92)90271-E] [PMID: 1347996]
[228]
Grosche, J.; Matyash, V.; Möller, T.; Verkhratsky, A.; Reichenbach, A.; Kettenmann, H. Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat. Neurosci., 1999, 2(2), 139-143.
[http://dx.doi.org/10.1038/5692] [PMID: 10195197]
[229]
Nimmerjahn, A.; Mukamel, E.A.; Schnitzer, M.J. Motor behavior activates Bergmann glial networks. Neuron, 2009, 62(3), 400-412.
[http://dx.doi.org/10.1016/j.neuron.2009.03.019] [PMID: 19447095]
[230]
Shigetomi, E.; Kracun, S.; Sofroniew, M.V.; Khakh, B.S. A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat. Neurosci., 2010, 13(6), 759-766.
[http://dx.doi.org/10.1038/nn.2557] [PMID: 20495558]
[231]
Srinivasan, R.; Huang, B.S.; Venugopal, S.; Johnston, A.D.; Chai, H.; Zeng, H.; Golshani, P.; Khakh, B.S. Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo. Nat. Neurosci., 2015, 18(5), 708-717.
[http://dx.doi.org/10.1038/nn.4001] [PMID: 25894291]
[232]
Okubo, Y. Astrocytic Ca2+ signaling mediated by the endoplasmic reticulum in health and disease. J. Pharmacol. Sci., 2020, 144(2), 83-88.
[http://dx.doi.org/10.1016/j.jphs.2020.07.006] [PMID: 32709559]
[233]
Fellin, T.; Pascual, O.; Gobbo, S.; Pozzan, T.; Haydon, P.G.; Carmignoto, G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron, 2004, 43(5), 729-743.
[http://dx.doi.org/10.1016/j.neuron.2004.08.011] [PMID: 15339653]
[234]
Perea, G.; Araque, A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci., 2005, 25(9), 2192-2203.
[http://dx.doi.org/10.1523/JNEUROSCI.3965-04.2005] [PMID: 15745945]
[235]
D’Ascenzo, M.; Fellin, T.; Terunuma, M.; Revilla-Sanchez, R.; Meaney, D.F.; Auberson, Y.P.; Moss, S.J.; Haydon, P.G. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc. Natl. Acad. Sci. USA, 2007, 104(6), 1995-2000.
[http://dx.doi.org/10.1073/pnas.0609408104] [PMID: 17259307]
[236]
Araque, A.; Sanzgiri, R.P.; Parpura, V.; Haydon, P.G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci., 1998, 18(17), 6822-6829.
[http://dx.doi.org/10.1523/JNEUROSCI.18-17-06822.1998] [PMID: 9712653]
[237]
Fiacco, T.A.; McCarthy, K.D. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J. Neurosci., 2004, 24(3), 722-732.
[http://dx.doi.org/10.1523/JNEUROSCI.2859-03.2004] [PMID: 14736858]
[238]
Perea, G.; Araque, A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science, 2007, 317(5841), 1083-1086.
[http://dx.doi.org/10.1126/science.1144640] [PMID: 17717185]
[239]
Zonta, M.; Angulo, M.C.; Gobbo, S.; Rosengarten, B.; Hossmann, K.A.; Pozzan, T.; Carmignoto, G. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci., 2003, 6(1), 43-50.
[http://dx.doi.org/10.1038/nn980] [PMID: 12469126]
[240]
Mulligan, S.J.; MacVicar, B.A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature, 2004, 431(7005), 195-199.
[http://dx.doi.org/10.1038/nature02827] [PMID: 15356633]
[241]
Gordon, G.R.; Choi, H.B.; Rungta, R.L.; Ellis-Davies, G.C.; MacVicar, B.A. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature, 2008, 456(7223), 745-749.
[http://dx.doi.org/10.1038/nature07525] [PMID: 18971930]
[242]
Guerra-Gomes, S.; Sousa, N.; Pinto, L.; Oliveira, J.F. Functional Roles of Astrocyte Calcium Elevations: From Synapses to Behavior. Front. Cell. Neurosci., 2018, 11, 427.
[http://dx.doi.org/10.3389/fncel.2017.00427] [PMID: 29386997]
[243]
Bazargani, N.; Attwell, D. Astrocyte calcium signaling: the third wave. Nat. Neurosci., 2016, 19(2), 182-189.
[http://dx.doi.org/10.1038/nn.4201] [PMID: 26814587]
[244]
Lalo, U.; Bogdanov, A.; Pankratov, Y. Diversity of astroglial effects on aging- and experience-related cortical metaplasticity. Front. Mol. Neurosci., 2018, 11, 239.
[http://dx.doi.org/10.3389/fnmol.2018.00239] [PMID: 30057525]
[245]
Abramov, A.Y.; Canevari, L.; Duchen, M.R. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci., 2003, 23(12), 5088-5095.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-05088.2003] [PMID: 12832532]
[246]
Kuchibhotla, K.V.; Lattarulo, C.R.; Hyman, B.T.; Bacskai, B.J. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science, 2009, 323(5918), 1211-1215.
[http://dx.doi.org/10.1126/science.1169096] [PMID: 19251629]
[247]
Takano, T.; Han, X.; Deane, R.; Zlokovic, B.; Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2007, 1097, 40-50.
[http://dx.doi.org/10.1196/annals.1379.004] [PMID: 17413008]
[248]
Stix, B.; Reiser, G. Beta-amyloid peptide 25-35 regulates basal and hormone-stimulated Ca2+ levels in cultured rat astrocytes. Neurosci. Lett., 1998, 243(1-3), 121-124.
[http://dx.doi.org/10.1016/S0304-3940(98)00106-2] [PMID: 9535128]
[249]
Meske, V.; Hamker, U.; Albert, F.; Ohm, T.G. The effects of beta/A4-amyloid and its fragments on calcium homeostasis, glial fibrillary acidic protein and S100beta staining, morphology and survival of cultured hippocampal astrocytes. Neuroscience, 1998, 85(4), 1151-1160.
[http://dx.doi.org/10.1016/S0306-4522(98)00008-6] [PMID: 9681953]
[250]
Li, S.; Hong, S.; Shepardson, N.E.; Walsh, D.M.; Shankar, G.M.; Selkoe, D. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 2009, 62(6), 788-801.
[http://dx.doi.org/10.1016/j.neuron.2009.05.012] [PMID: 19555648]
[251]
Tanaka, M.; Shigetomi, E.; Parajuli, B.; Nagatomo, H.; Shinozaki, Y.; Hirayama, Y.; Saito, K.; Kubota, Y.; Danjo, Y.; Lee, J.H.; Kim, S.K.; Nabekura, J.; Koizumi, S. Adenosine A2B receptor down-regulates metabotropic glutamate receptor 5 in astrocytes during postnatal development. Glia, 2021, 69(11), 2546-2558.
[http://dx.doi.org/10.1002/glia.24006] [PMID: 34339538]
[252]
Lalo, U.; Palygin, O.; North, R.A.; Verkhratsky, A.; Pankratov, Y. Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell, 2011, 10(3), 392-402.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00682.x] [PMID: 21272193]
[253]
Lalo, U.; Rasooli-Nejad, S.; Pankratov, Y. Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem. Soc. Trans., 2014, 42(5), 1275-1281.
[http://dx.doi.org/10.1042/BST20140163] [PMID: 25233403]
[254]
Palygin, O.; Lalo, U.; Verkhratsky, A.; Pankratov, Y. Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium, 2010, 48(4), 225-231.
[http://dx.doi.org/10.1016/j.ceca.2010.09.004] [PMID: 20926134]
[255]
Tanabe, Y.; Nomura, A.; Masu, M.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci., 1993, 13(4), 1372-1378.
[http://dx.doi.org/10.1523/JNEUROSCI.13-04-01372.1993] [PMID: 8463825]
[256]
Tanabe, Y.; Masu, M.; Ishii, T.; Shigemoto, R.; Nakanishi, S. A family of metabotropic glutamate receptors. Neuron, 1992, 8(1), 169-179.
[http://dx.doi.org/10.1016/0896-6273(92)90118-W] [PMID: 1309649]
[257]
Haustein, M.D.; Kracun, S.; Lu, X.H.; Shih, T.; Jackson-Weaver, O.; Tong, X.; Xu, J.; Yang, X.W.; O’Dell, T.J.; Marvin, J.S.; Ellisman, M.H.; Bushong, E.A.; Looger, L.L.; Khakh, B.S. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron, 2014, 82(2), 413-429.
[http://dx.doi.org/10.1016/j.neuron.2014.02.041] [PMID: 24742463]
[258]
Zeng, W.; Mak, D.O.; Li, Q.; Shin, D.M.; Foskett, J.K.; Muallem, S. A new mode of Ca2+ signaling by G protein-coupled receptors: gating of IP3 receptor Ca2+ release channels by Gbetagamma. Curr. Biol., 2003, 13(10), 872-876.
[http://dx.doi.org/10.1016/S0960-9822(03)00330-0] [PMID: 12747838]
[259]
Kol, A.; Adamsky, A.; Groysman, M.; Kreisel, T.; London, M.; Goshen, I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat. Neurosci., 2020, 23(10), 1229-1239.
[http://dx.doi.org/10.1038/s41593-020-0679-6] [PMID: 32747787]
[260]
Lee, R.K.; Jimenez, J.; Cox, A.J.; Wurtman, R.J. Metabotropic glutamate receptors regulate APP processing in hippocampal neurons and cortical astrocytes derived from fetal rats. Ann. N. Y. Acad. Sci., 1996, 777, 338-343.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb34443.x] [PMID: 8624110]
[261]
Lee, R.K.; Wurtman, R.J. Metabotropic glutamate receptors increase amyloid precursor protein processing in astrocytes: inhibition by cyclic AMP. J. Neurochem., 1997, 68(5), 1830-1835.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68051830.x] [PMID: 9109507]
[262]
Jones, R.S.; Minogue, A.M.; Connor, T.J.; Lynch, M.A. Amyloid-β-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J. Neuroimmune Pharmacol., 2013, 8(1), 301-311.
[http://dx.doi.org/10.1007/s11481-012-9427-3] [PMID: 23238794]
[263]
Westmark, C.J.; Malter, J.S. FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol., 2007, 5(3), e52.
[http://dx.doi.org/10.1371/journal.pbio.0050052] [PMID: 17298186]
[264]
D’Agata, V.; Warren, S.T.; Zhao, W.; Torre, E.R.; Alkon, D.L.; Cavallaro, S. Gene expression profiles in a transgenic animal model of fragile X syndrome. Neurobiol. Dis., 2002, 10(3), 211-218.
[http://dx.doi.org/10.1006/nbdi.2002.0506] [PMID: 12270684]
[265]
Men, Y.; Ye, L.; Risgaard, R.D.; Promes, V.; Zhao, X.; Paukert, M.; Yang, Y. Astroglial FMRP deficiency cell-autonomously up-regulates miR-128 and disrupts developmental astroglial mGluR5 signaling. Proc. Natl. Acad. Sci. USA, 2020, 117(40), 25092-25103.
[http://dx.doi.org/10.1073/pnas.2014080117] [PMID: 32958647]
[266]
Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection? Front. Mol. Neurosci., 2018, 11, 414.
[http://dx.doi.org/10.3389/fnmol.2018.00414] [PMID: 30483053]
[267]
Bruno, V.; Sureda, F.X.; Storto, M.; Casabona, G.; Caruso, A.; Knopfel, T.; Kuhn, R.; Nicoletti, F. The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J. Neurosci., 1997, 17(6), 1891-1897.
[http://dx.doi.org/10.1523/JNEUROSCI.17-06-01891.1997] [PMID: 9045718]
[268]
Corti, C.; Battaglia, G.; Molinaro, G.; Riozzi, B.; Pittaluga, A.; Corsi, M.; Mugnaini, M.; Nicoletti, F.; Bruno, V. The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J. Neurosci., 2007, 27(31), 8297-8308.
[http://dx.doi.org/10.1523/JNEUROSCI.1889-07.2007] [PMID: 17670976]
[269]
Durand, D.; Carniglia, L.; Caruso, C.; Lasaga, M. Reduced cAMP, Akt activation and p65-c-Rel dimerization: mechanisms involved in the protective effects of mGluR3 agonists in cultured astrocytes. PLoS One, 2011, 6(7), e22235.
[http://dx.doi.org/10.1371/journal.pone.0022235] [PMID: 21779400]
[270]
Turati, J.; Ramírez, D.; Carniglia, L.; Saba, J.; Caruso, C.; Quarleri, J.; Durand, D.; Lasaga, M. Antioxidant and neuroprotective effects of mGlu3 receptor activation on astrocytes aged in vitro. Neurochem. Int., 2020, 140, 104837.
[http://dx.doi.org/10.1016/j.neuint.2020.104837] [PMID: 32858088]
[271]
Carvalho, T.G.; Alves-Silva, J.; de Souza, J.M.; Real, A.L.C.V.; Doria, J.G.; Vieira, E.L.M.; Gomes, G.F.; de Oliveira, A.C.; Miranda, A.S.; Ribeiro, F.M. Metabotropic glutamate receptor 5 ablation accelerates age-related neurodegeneration and neuroinflammation. Neurochem. Int., 2019, 126, 218-228.
[http://dx.doi.org/10.1016/j.neuint.2019.03.020] [PMID: 30930274]
[272]
Weiler, R.; Lassmann, H.; Fischer, P.; Jellinger, K.; Winkler, H. A high ratio of chromogranin A to synaptin/synaptophysin is a common feature of brains in Alzheimer and Pick disease. FEBS Lett., 1990, 263(2), 337-339.
[http://dx.doi.org/10.1016/0014-5793(90)81408-G] [PMID: 2110534]
[273]
Yasuhara, O.; Kawamata, T.; Aimi, Y.; McGeer, E.G.; McGeer, P.L. Expression of chromogranin A in lesions in the central nervous system from patients with neurological diseases. Neurosci. Lett., 1994, 170(1), 13-16.
[http://dx.doi.org/10.1016/0304-3940(94)90227-5] [PMID: 8041489]
[274]
Kingham, P.J.; Cuzner, M.L.; Pocock, J.M. Apoptotic pathways mobilized in microglia and neurones as a consequence of chromogranin A-induced microglial activation. J. Neurochem., 1999, 73(2), 538-547.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0730538.x] [PMID: 10428049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy