Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Hall and Ion Slip Impacts on Unsteady MHD Convective Flow of Ag-TiO2/WEG Hybrid Nanofluid in a Rotating Frame

Author(s): M. Veera Krishna* and Ali J. Chamkha

Volume 19, Issue 1, 2023

Published on: 14 January, 2022

Page: [15 - 32] Pages: 18

DOI: 10.2174/1573413717666211018113823

Price: $65

Abstract

Background: The radiative magnetohydrodynamic (MHD) flow of an incompressible viscous electrically conducting hybrid nanofluid over an exponentially accelerated vertical surface under the influence of slip velocity in a rotating frame taking Hall and ion slip impacts is discussed.

Methods: Water and ethylene glycol mixture have been considered as a base fluid. A steady homogeneous magnetic field is applied under the assumption of a low magnetic Reynolds number. The ramped temperature and time-varying concentration at the surface are taken into consideration. The first-order consistent chemical reaction and heat absorption are also regarded. Silver (Ag) and titania (TiO2) nanoparticles are disseminated in base fluid water and ethylene glycol mixture to be formed a hybrid nanofluid. The Laplace transformation technique is employed on the non-dimensional governing equations for the closed form solutions.

Results: The phrases for non-dimensional shear stresses, rates of heat, and mass transfer are also evaluated. The graphical representations are presented to scrutinize the effects of physical parameters on the significantflow characteristics. The computational values of the shear stresses, rates of heat and mass transports near the surface are tabulated by a range of implanted parameters.

Conclusion: The resultant velocity grows by an increase in thermal and concentration buoyancy forces, Hall and ion-slip parameters, whereas rotation and slip parameters have overturn outcome on them. The temperature of hybrid Ag-TiO2/WEG nanofluid is relatively superior to that of Ag-WEG nanofluid. Species concentration of hybrid Ag-TiO2/WEG nanofluid decreases due to an increase in Schmidt number and chemical reaction parameter.

Keywords: Hall effects, MHD flows, nanofluids, porous medium, convective flow, thermal radiation.

Graphical Abstract
[1]
Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles, No. ANL/MSD/CP-84938, CONF-951135–29; Argonne National Lab: IL, United States, 1995.
[2]
Sundar, L.S.; Sharma, K.V.; Singh, M.K.; Sousa, A.C.M. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor- A review. Renew. Sustain. Energy Rev., 2017, 68, 185-198.
[http://dx.doi.org/10.1016/j.rser.2016.09.108]
[3]
Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev., 2015, 43, 164-177.
[http://dx.doi.org/10.1016/j.rser.2014.11.023]
[4]
Devi, S.P.A.; Devi, S.S.U. Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul., 2016, 17, 249-257.
[http://dx.doi.org/10.1515/ijnsns-2016-0037]
[5]
Minea, A.A. Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison. Renew. Sustain. Energy Rev., 2017, 71, 426-434.
[http://dx.doi.org/10.1016/j.rser.2016.12.072]
[6]
Toghraie, D.; Vahid, A.C.; Masoud, A. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Calorim., 2016, 125, 527-535.
[http://dx.doi.org/10.1007/s10973-016-5436-4]
[7]
Hayat, T.; Nadeem, S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys., 2017, 7, 2317-2324.
[http://dx.doi.org/10.1016/j.rinp.2017.06.034]
[8]
Jamshed, W.; Aziz, A. A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyering nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape. Results Phys., 2018, 9, 195-205.
[http://dx.doi.org/10.1016/j.rinp.2018.01.063]
[9]
Ellahi, R. Special issue on recent developments of nanofluids. Appl. Sci. (Basel), 2018, 8, 192.
[http://dx.doi.org/10.3390/app8020192]
[10]
Aman, S.; Zokri, S.M.; Ismail, Z.; Salleh, M.Z.; Khan, I. Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid. J. Adv. Res. Fluid Mech. Therm. Sci., 2018, 44, 131-139.
[11]
Usman, M.; Hamid, M.; Zubair, T.; Haq, R.U.; Wang, W. Cu-Al2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int. J. Heat Mass Transf., 2018, 126, 1347-1356.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.06.005]
[12]
Abo-Eldahab, E.; Barakat, E.; Nowar, K. Hall currents and heat transfer effects on peristaltic transport in a vertical asymmetric channel through a porous medium. Math. Probl. Eng., 2012, 2012, 1-23.
[http://dx.doi.org/10.1155/2012/840203]
[13]
Koumy, S.R.E.; Barakat, E.S.I.; Abdelsalam, S.I. Hall and porous boundaries effects on peristaltic transport through porous medium of a maxwell model. Transp. Porous Media, 2012, 94, 643-658.
[http://dx.doi.org/10.1007/s11242-012-0016-y]
[14]
Motsa, S.S.; Shateyi, S. The effects of chemical reaction, hall and ion-slip currents on MHD micropolar fluid flow with thermal diffusivity using a novel numerical technique. J. Appl. Math., 2012, 2012, 1-30.
[http://dx.doi.org/10.1155/2012/689015]
[15]
Asghar, S.; Hussain, Q.; Hayat, T.; Alsaadi, F. Hall and ion slip effects on peristaltic flow and heat transfer analysis with ohmic heating. Appl. Math. Mech., 2014, 35, 1509-1524.
[http://dx.doi.org/10.1007/s10483-014-1881-6]
[16]
Krishna, M.V.; Chamkha, A.J. Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys., 2019, 15, 102652.
[http://dx.doi.org/10.1016/j.rinp.2019.102652]
[17]
Krishna, M.V.; Swarnalathamma, B.V.; Chamkha, A.J. Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J. Ocean Eng. Sci., 2019, 4(3), 263-275.
[http://dx.doi.org/10.1016/j.joes.2019.05.002]
[18]
Krishna, M.V.; Chamkha, A.J. Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids - application in biomedical engineering. J. Egypt. Math. Soc., 2020, 28(1), 1-14.
[http://dx.doi.org/10.1186/s42787-019-0065-2]
[19]
Krishna, M.V. Heat transport on steady MHD flow of copper and alumina nanofluids past a stretching porous surface. Heat Transf. Asian Res., 2020, 49(2), 1-12.
[http://dx.doi.org/10.1002/htj.21667]
[20]
Krishna, M.V.; Ahamad, N.A.; Chamkha, A.J. Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex. Eng. J., 2020, 59, 565-577.
[http://dx.doi.org/10.1016/j.aej.2020.01.043]
[21]
Chau, Y.F.; Hu, C.C.; Jheng, C.Y. Numerical investigation of surface plasmon resonance effects on photo-catalytic activities using silver nano-beads photo-deposited onto a titanium dioxide layer. Optics Communications, 2014, 331, 223-228.
[http://dx.doi.org/10.1016/j.optcom.2014.06.018]
[22]
Huang, H.J.; Wu, J.C.S.; Chiand, H.P.; Chau, Y.F.C. Review of experimental setups for plasmonic photocatalytic reactions. Catalysts, 2020, 10(1), 46.
[http://dx.doi.org/10.3390/catal10010046]
[23]
Chen, M.W.; Chau, Y.F.; Tsai, D.P. Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres. Plasmonics, 2008, 3, 157.
[http://dx.doi.org/10.1007/s11468-008-9069-8]
[24]
Chau, Y.F. Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair. Plasmonics, 2009, 4, 253.
[http://dx.doi.org/10.1007/s11468-009-9100-8]
[25]
Chau, Y.F.; Jiang, Z.H.; Li, H.Y.; Lin, G.M.; Wu, F.L.; Lin, W.H. Localized resonance of composite core-shell nanospheres, nanobars and nanospherical chains. Prog. Electromagn. Res. B Pier B, 2011, 28, 183-199.
[http://dx.doi.org/10.2528/PIERB10102705]
[26]
Turkyilmazoglu, M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Programs Biomed., 2019, 179, 104997.
[http://dx.doi.org/10.1016/j.cmpb.2019.104997]
[27]
Turkyilmazoglu, M. Natural convective flow of nanofluids past a radiative and impulsive vertical plate. J. Aerosp. Eng., 2016, 29(6), 04016049.
[http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000643]
[28]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135, 781.
[http://dx.doi.org/10.1140/epjp/s13360-020-00812-y]
[29]
Turkyilmazoglu, M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput. Methods Programs Biomed., 2019, 187, 105171.
[http://dx.doi.org/10.1016/j.cmpb.2019.105171]
[30]
Yadav, D.; Chu, Y.M.; Li, Z. Examination of the nanofluid convective instability of vertical constant throughflow in a porous medium layer with variable gravity. Appl. Nanosci., 2021.
[http://dx.doi.org/10.1007/s13204-021-01700-2]
[31]
Yadav, D. The effect of pulsating throughflow on the onset of magneto convection in a layer of nanofluid confined within a Hele-Shaw cell. Proc. Inst. Mech. Eng. J. Process Mech. Eng., 2019, 233(5), 1074-1085.
[http://dx.doi.org/10.1177/0954408919836362]
[32]
Yadav, D. Numerical solution of the onset of Buoyancy‐driven nanofluid convective motion in an anisotropic porous medium layer with variable gravity and internal heating. Heat Transf., 2020, 49(3), 1170-1191.
[http://dx.doi.org/10.1002/htj.21657]
[33]
Yadav, D. Influence of anisotropy on the Jeffrey fluid convection in a horizontal rotary porous layer. Heat Transf., 2021, 50(5), 4595-4606.
[http://dx.doi.org/10.1002/htj.22090]
[34]
Chu, Y.; Yadav, D.; Shafee, A.; Li, Z.; Bach, Q. Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liq., 2020, 319, 114121.
[http://dx.doi.org/10.1016/j.molliq.2020.114121]
[35]
Zuo, H.; Salahshoor, Z.; Yadav, D.; Hajizadeh, M.R.; Vuong, B.X. Investigation of thermal treatment of hybrid nanoparticles in a domain with different permeabilities. J. Therm. Anal. Calorim., 2020, 145, 2787-2794.
[http://dx.doi.org/10.1007/s10973-020-09824-3]
[36]
Yadav, D. The onset of longitudinal convective rolls in a porous medium saturated by a nanofluid with non-uniform internal heating and chemical reaction. J. Therm. Anal. Calorim., 2019, 135(2), 1107-1117.
[http://dx.doi.org/10.1007/s10973-018-7748-z]
[37]
Yadav, D. The density-driven nanofluid convection in an anisotropic porous medium layer with rotation and variable gravity field: A numerical investigation. J. Appl. Comput. Mech., 2020, 6(3), 699-712.https://doi.org/10.22055/jacm.2019.31137.1833
[38]
Ganesh, N.V.; Al-Mdallal, Q.M.; Chamkha, A.J. A numerical investigation of Newtonian fluid flow with buoyancy, thermal slip of order two and entropy generation. Case Stud. Therm. Eng., 2019, 13, 100376.
[http://dx.doi.org/10.1016/j.csite.2018.100376]
[39]
Krishna, M.V. Radiation-absorption, chemical reaction, Hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface. Chin. J. Chem. Eng., 2021, 31, 1-13.
[http://dx.doi.org/10.1016/cjche.2020.12.026]
[40]
Krishna, M.V. Hall and ion slip effects on radiative MHD rotating flow of Jeffreys fluid past an infinite vertical flat porous surface with ramped wall velocity and temperature. Int. Commun. Heat Mass Transf., 2021, 126, 105399.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105399]
[41]
Krishna, M.V. Hall and ion slip impacts on unsteady MHD free convective rotating flow of Jeffreys fluid with ramped wall temperature. Int. Commun. Heat Mass Transf., 2020, 119, 104927.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104927]
[42]
Krishna, M.V.; Sravanthi, C.S.; Gorla, R.S.R. Hall and ion slip effects on MHD rotating flow of ciliary propulsion of microscopic organism through porous media. Int. Commun. Heat Mass Transf., 2020, 112, 104500.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104500]
[43]
Krishna, M.V.; Chamkha, A.J. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int. Commun. Heat Mass Transf., 2020, 113, 104494.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104494]
[44]
Singh, J.K.; Srinivasa, C.T. Unsteady natural convection flow of a rotating fluid past an exponential accelerated vertical plate with Hall current, ion-slip and magnetic effect. Multidiscip. Model. Mater. Struct., 2018, 14(2), 216-235.
[http://dx.doi.org/10.1108/MMMS-06-2017-0045]
[45]
Sutton, G.; Sherman, A. Engineering Magneto hydrodynamics; Mc Graw Hill: NewYork, 1965.
[46]
Krishna, M.V.; Ahammad, N.A.; Chamkha, A.J. Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Stud. Therm. Eng., 2021, 27, 101229.
[http://dx.doi.org/10.1016/j.csite.2021.101229]
[47]
Khaled, A.R.A.; Vafai, K. The effect of slip condition on Stokes and Couette flows due to an oscillating wall: Exact solutions. Int. J. Nonlin. Mech., 2004, 39, 795.
[http://dx.doi.org/10.1016/S0020-7462(03)00043-X]
[48]
Lauge, E.; Brenner, M.P.; Stone, H.A. Microfluidics: The no-slip boundary condition; Springer: New York, 2007.
[49]
Devi, S.S.U.; Devi, S.P.A. Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys., 2016, 94(5), 490-496.
[http://dx.doi.org/10.1139/cjp-2015-0799]
[50]
Lund, L.A.; Omar, Z.; Khan, I.; Dero, S. Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface. J. Cent. South Univ., 2019, 26, 1283-1293.
[http://dx.doi.org/10.1007/s11771-019-4087-6]
[51]
Aman, S.; Zokri, S.M.; Ismail, Z. Casson model of MHD flow of SA-based hybrid nanofluid using Caputo time-fractional models. Defect Diff. Forum, 2019, 390, pp. 83-90.
[52]
Nabil, M.F.; Azmi, W.H.; Hamid, K.A.; Hagos, F.Y.; Mamat, R. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture. Int. Commun. Heat Mass Transf., 2017, 86, 181-189.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.05.024]
[53]
Ali, H.M.; Babar, H.; Shah, T.R.; Shajid, M.U.; Qasim, M.A.; Javed, S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl. Sci. (Basel), 2018, 8, 587.
[http://dx.doi.org/10.3390/app8040587]
[54]
Seth, G.S.; Ansari, M.S.; Nandkeolyar, R. MHD natural convection flow with radiative heat transfer past an impulsively moving plate with ramped wall temperature. Heat Mass Transf., 2011, 47(5), 551-561.
[http://dx.doi.org/10.1007/s00231-010-0740-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy