Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

FABP1 Gene Variant is Associated with Risk of Metabolic Syndrome

Author(s): Reza Zare-Feyzabadi, Majid Mozaffari*, Majid Ghayour-Mobarhan* and Mohsen Valizadeh

Volume 25, Issue 8, 2022

Published on: 03 June, 2021

Page: [1355 - 1360] Pages: 6

DOI: 10.2174/1386207324666210603114434

Price: $65

conference banner
Abstract

Background: Metabolic Syndrome (MetS) is defined by a clustering of metabolic abnormalities associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. There has been an increasing interest in the associations of genetic variant involved in diabetes and obesity in the FABP1 pathway. The relationship between the rs2241883 polymorphism of FABP1 and risk of MetS remains unclear.

Objective: We aimed to examine the association between this genetic polymorphism and the presence of MetS and its constituent factors.

Methods: A total of 942 participants were recruited as part of the Mashhad Stroke and Heart Atherosclerosis Disorders (MASHAD study) Cohort. Patients with MetS were identified using the International Diabetes Federation (IDF) criteria (n=406) and those without MetS (n=536) were also recruited. DNA was extracted from peripheral blood samples that was used for genotyping for the FABP1 rs2241883T/C polymorphism using Tetra-Amplification Refractory Mutation System Polymerase Chain Reaction (Tetra-ARMS PCR). Genetic analysis was confirmed by gel electrophoresis and DNA sequencing.

Results: Using both univariate and multivariate analyses after adjusting for age, sex and physical activity, carriers of C allele (CT/CC genotypes) in FABP1 variant was related to an increased risk of MetS, compared to non-carriers (OR: 1.38, 95%CI: 1.04,1.82, p=0.026).

Conclusion: The present study shows that C allele in FABP1 variant can be associated with an increased risk of MetS. The evaluation of these factors in a larger population may help further confirm these findings.

Keywords: FABP1, metabolic syndrome, genetic variants, diabetes, cardiovascular disease, polymorphism

[1]
Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: definitions and controversies. BMC Med., 2011, 9(1), 48.
[http://dx.doi.org/10.1186/1741-7015-9-48] [PMID: 21542944]
[2]
Lakka, H-M.; Laaksonen, D.E.; Lakka, T.A.; Niskanen, L.K.; Kumpusalo, E.; Tuomilehto, J.; Salonen, J.T. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA, 2002, 288(21), 2709-2716.
[http://dx.doi.org/10.1001/jama.288.21.2709] [PMID: 12460094]
[3]
Ghazizadeh, H.; Esmaily, H.; Sharifan, P.; Parizadeh, S.M.R.; Ferns, G.A.; Rastgar-Moghadam, A. Interaction between a genetic variant in vascular endothelial growth factor with dietary intakes in association with the main factors of metabolic syndrome. Gene Rep., 2020, 21, 100813.
[http://dx.doi.org/10.1016/j.genrep.2020.100813]
[4]
El Bilbeisi, A.H.; Shab-Bidar, S.; Jackson, D.; Djafarian, K. The prevalence of metabolic syndrome and its related factors among adults in Palestine: a meta-analysis. Ethiop. J. Health Sci., 2017, 27(1), 77-84.
[http://dx.doi.org/10.4314/ejhs.v27i1.10] [PMID: 28458493]
[5]
Ostovar, R.; Kiani, F.; Sayehmiri, F.; Yasemi, M.; Mohsenzadeh, Y.; Mohsenzadeh, Y. Prevalence of metabolic syndrome in Iran: A meta-analysis. Electron. Physician, 2017, 9(10), 5402-5418.
[http://dx.doi.org/10.19082/5402] [PMID: 29238477]
[6]
Ghazizadeh, H.; Mobarra, N.; Esmaily, H.; Seyedi, S.M.R.; Amiri, A.; Rezaeitalab, F.; Mokhber, N.; Moohebati, M.; Ebrahimi, M.; Tayebi, M.; Behboodi, N.; Mohammadi-Bajgiran, M.; Hashemi, S.; Ferns, G.A.; Stranges, S.; Ghayour-Mobarhan, M.; Azarpazhooh, M.R. The association between daily naps and metabolic syndrome: Evidence from a population-based study in the Middle-East. Sleep Health, 2020, 6(5), 684-689.
[http://dx.doi.org/10.1016/j.sleh.2020.03.007] [PMID: 32482574]
[7]
Barati, E.; Ghazizadeh, H.; Sadabadi, F.; Kazemi, E.; Ferns, G.A.; Avan, A.; Ghayour-Mobarhan, M. Association of the IL6 gene polymorphism with component features of metabolic syndrome in obese subjects. Biochem. Genet., 2019, 57(5), 695-708.
[http://dx.doi.org/10.1007/s10528-019-09913-5] [PMID: 30989422]
[8]
Azimi-Nezhad, M.; Herbeth, B.; Siest, G.; Dadé, S.; Ndiaye, N.C.; Esmaily, H.; Hosseini, S.J.; Ghayour-Mobarhan, M.; Visvikis-Siest, S. High prevalence of metabolic syndrome in Iran in comparison with France: what are the components that explain this? Metab. Syndr. Relat. Disord., 2012, 10(3), 181-188.
[http://dx.doi.org/10.1089/met.2011.0097] [PMID: 22283632]
[9]
Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev., 2004, 25(4), 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[10]
DeMenna, J.; Puppala, S.; Chittoor, G.; Schneider, J.; Kim, J.Y.; Shaibi, G.Q.; Mandarino, L.J.; Duggirala, R.; Coletta, D.K. Association of common genetic variants with diabetes and metabolic syndrome related traits in the Arizona Insulin Resistance registry: a focus on Mexican American families in the Southwest. Hum. Hered., 2014, 78(1), 47-58.
[http://dx.doi.org/10.1159/000363411] [PMID: 25060389]
[11]
Mohlke, K.L.; Boehnke, M.; Abecasis, G.R. Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants. Hum. Mol. Genet., 2008, 17(R2), R102-R108.
[http://dx.doi.org/10.1093/hmg/ddn275] [PMID: 18852197]
[12]
Peng, X-E.; Wu, Y-L.; Zhu, Y.B.; Huang, R.D.; Lu, Q-Q.; Lin, X. Association of a human FABP1 gene promoter region polymorphism with altered serum triglyceride levels. PLoS One, 2015, 10(10), e0139417.
[http://dx.doi.org/10.1371/journal.pone.0139417] [PMID: 26439934]
[13]
Ichihara, S.; Yamada, Y. Genetic factors for human obesity. Cell. Mol. Life Sci., 2008, 65(7-8), 1086-1098.
[http://dx.doi.org/10.1007/s00018-007-7453-8] [PMID: 18097636]
[14]
Lyon, H.N.; Hirschhorn, J.N. Genetics of common forms of obesity: a brief overview. Am. J. Clin. Nutr., 2005, 82(1)(Suppl.), 215S-217S.
[http://dx.doi.org/10.1093/ajcn/82.1.215S] [PMID: 16002823]
[15]
Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 2008, 7(6), 489-503.
[http://dx.doi.org/10.1038/nrd2589] [PMID: 18511927]
[16]
Dreos, R.; Ambrosini, G.; Périer, R.C.; Bucher, P. The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res., 2015, 43(Database issue), D92-D96.
[http://dx.doi.org/10.1093/nar/gku1111] [PMID: 25378343]
[17]
Mao, H.; Xu, X.; Liu, H.; Cao, H.; Dong, X.; Xu, N.; Zou, X.; Yin, Z. The temporal-spatial patterns, polymorphisms and association analysis with meat quality traits of FABP1 gene in domestic pigeons (Columba livia). Br. Poult. Sci., 2020, 61(3), 232-241.
[http://dx.doi.org/10.1080/00071668.2020.1724880] [PMID: 32063032]
[18]
Hardwick, J.P.; Eckman, K.; Lee, Y.K.; Abdelmegeed, M.A.; Esterle, A.; Chilian, W.M.; Chiang, J.Y.; Song, B.J. Eicosanoids in metabolic syndrome. Adv. Pharmacol., 2013, 66, 157-266.
[http://dx.doi.org/10.1016/B978-0-12-404717-4.00005-6] [PMID: 23433458]
[19]
Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F. Liver fatty acid-binding protein and obesity. J. Nutr. Biochem., 2010, 21(11), 1015-1032.
[http://dx.doi.org/10.1016/j.jnutbio.2010.01.005] [PMID: 20537520]
[20]
Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics, 2014, 13(2), 397-406.
[http://dx.doi.org/10.1074/mcp.M113.035600]
[21]
Rashid, N.; Nigam, A.; Saxena, P.; Jain, S.K.; Wajid, S. Association of IL-1β, IL-1Ra and FABP1 gene polymorphisms with the metabolic features of polycystic ovary syndrome. Inflamm. Res., 2017, 66(7), 621-636.
[http://dx.doi.org/10.1007/s00011-017-1045-3] [PMID: 28405733]
[22]
Ghayour-Mobarhan, M.; Moohebati, M.; Esmaily, H.; Ebrahimi, M.; Parizadeh, S.M.R.; Heidari-Bakavoli, A.R.; Safarian, M.; Mokhber, N.; Nematy, M.; Saber, H.; Mohammadi, M.; Andalibi, M.S.; Ferns, G.A.; Azarpazhooh, M.R. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. Int. J. Public Health, 2015, 60(5), 561-572.
[http://dx.doi.org/10.1007/s00038-015-0679-6] [PMID: 25943424]
[23]
Ghazizadeh, H.; Rezaei, M.; Avan, A.; Fazilati, M.; Pasdar, A.; Tavallaie, S.; Kazemi, E.; Seyedi, S.M.R.; Ferns, G.A.; Azimi-Nezhad, M.; Ghayour-Mobarhan, M. Association between serum cell adhesion molecules with hs-CRP, uric acid and VEGF genetic polymorphisms in subjects with metabolic syndrome. Mol. Biol. Rep., 2020, 47(2), 867-875.
[http://dx.doi.org/10.1007/s11033-019-05081-2] [PMID: 31873873]
[24]
Zomorrodian, D.; Khajavi-Rad, A.; Avan, A.; Ebrahimi, M.; Nematy, M.; Azarpazhooh, M.R.; Emamian, M.; Sadeghzade, M.; Mirhafez, S.R.; Mohammadi, M.; Mousavi, M.; Esmaeili, H.; Moohebati, M.; Parizadeh, M.R.; Ferns, G.A.; Ghayour-Mobarhan, M. Metabolic syndrome components as markers to prognosticate the risk of developing chronic kidney disease: evidence-based study with 6492 individuals. J. Epidemiol. Community Health, 2015, 69(6), 594-598.
[http://dx.doi.org/10.1136/jech-2014-205160] [PMID: 25631859]
[25]
Ghazizadeh, H.; Fazilati, M.; Pasdar, A.; Avan, A.; Tayefi, M.; Ghasemi, F.; Mehramiz, M.; Mirhafez, S.R.; Ferns, G.A.; Azimi-Nezhad, M.; Ghayour-Mobarhan, M. Association of a vascular endothelial growth factor genetic variant with serum VEGF level in subjects with metabolic syndrome. Gene, 2017, 598, 27-31.
[http://dx.doi.org/10.1016/j.gene.2016.10.034] [PMID: 27984191]
[26]
Mardan-Nik, M.; Saffar Soflaei, S.; Biabangard-Zak, A.; Asghari, M.; Saljoughian, S.; Tajbakhsh, A.; Meshkat, Z.; Ferns, G.A.; Pasdar, A.; Ghayour-Mobarhan, M. A method for improving the efficiency of DNA extraction from clotted blood samples. J. Clin. Lab. Anal., 2019, 33(6), e22892.
[http://dx.doi.org/10.1002/jcla.22892] [PMID: 31074532]
[27]
Antonenkov, V.D.; Sormunen, R.T.; Ohlmeier, S.; Amery, L.; Fransen, M.; Mannaerts, G.P.; Hiltunen, J.K. Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes. Biochem. J., 2006, 394(Pt 2), 475-484.
[http://dx.doi.org/10.1042/BJ20051058] [PMID: 16262600]
[28]
Guilmeau, S.; Niot, I.; Laigneau, J.P.; Devaud, H.; Petit, V.; Brousse, N.; Bouvier, R.; Ferkdadji, L.; Besmond, C.; Aggerbeck, L.P.; Bado, A.; Samson-Bouma, M.E. Decreased expression of Intestinal I- and L-FABP levels in rare human genetic lipid malabsorption syndromes. Histochem. Cell Biol., 2007, 128(2), 115-123.
[http://dx.doi.org/10.1007/s00418-007-0302-x] [PMID: 17605029]
[29]
Chang, H.S.; Park, J.S.; Shin, H-R.; Park, B.L.; Shin, H.D.; Park, C-S. Association analysis of FABP1 gene polymorphisms with aspirin-exacerbated respiratory disease in asthma. Exp. Lung Res., 2014, 40(10), 485-494.
[http://dx.doi.org/10.3109/01902148.2014.927939] [PMID: 25338211]
[30]
Xue, H.; Zhao, H.; Liu, X.; Zhao, Y.R.; Chen, Z-J.; Ma, J. Association of single-nucleotide polymorphisms rs2197076 and rs2241883 of FABP1 gene with polycystic ovary syndrome. J. Assist. Reprod. Genet., 2016, 33(1), 75-83.
[http://dx.doi.org/10.1007/s10815-015-0626-8] [PMID: 26650609]
[31]
Peng, X-E.; Wu, Y-L.; Lu, Q-Q.; Hu, Z-J.; Lin, X. Two genetic variants in FABP1 and susceptibility to non-alcohol fatty liver disease in a Chinese population. Gene, 2012, 500(1), 54-58.
[http://dx.doi.org/10.1016/j.gene.2012.03.050] [PMID: 22465531]
[32]
Vincent, S.; Planells, R.; Defoort, C.; Bernard, M-C.; Gerber, M.; Prudhomme, J.; Vague, P.; Lairon, D. Genetic polymorphisms and lipoprotein responses to diets. Proc. Nutr. Soc., 2002, 61(4), 427-434.
[http://dx.doi.org/10.1079/PNS2002177] [PMID: 12691171]
[33]
Schroeder, F.; McIntosh, A.L.; Martin, G.G.; Huang, H.; Landrock, D.; Chung, S.; Landrock, K.K.; Dangott, L.J.; Li, S.; Kaczocha, M.; Murphy, E.J.; Atshaves, B.P.; Kier, A.B. Fatty acid binding protein-1 (FABP1) and the human FABP1 T94A variant: Roles in the endocannabinoid system and dyslipidemias. Lipids, 2016, 51(6), 655-676.
[http://dx.doi.org/10.1007/s11745-016-4155-8] [PMID: 27117865]
[34]
Gao, N.; Qu, X.; Yan, J.; Huang, Q.; Yuan, H-Y.; Ouyang, D-S. L-FABP T94A decreased fatty acid uptake and altered hepatic triglyceride and cholesterol accumulation in Chang liver cells stably transfected with L-FABP. Mol. Cell. Biochem., 2010, 345(1-2), 207-214.
[http://dx.doi.org/10.1007/s11010-010-0574-7] [PMID: 20721681]
[35]
Wang, M.; Liu, X.; Lin, S.; Tian, T.; Guan, F.; Guo, Y.; Li, X.; Deng, Y.; Zheng, Y.; Xu, P.; Hao, Q.; Zhai, Z.; Dai, Z. FABP1 polymorphisms contribute to hepatocellular carcinoma susceptibility in Chinese population with liver cirrhosis: a case-control study. J. Cancer, 2018, 9(22), 4294-4300.
[http://dx.doi.org/10.7150/jca.27301] [PMID: 30519332]
[36]
Mansego, M.L.; Martínez, F.; Martínez-Larrad, M.T.; Zabena, C.; Rojo, G.; Morcillo, S.; Soriguer, F.; Martín-Escudero, J.C.; Serrano-Ríos, M.; Redon, J.; Chaves, F.J. Common variants of the liver fatty acid binding protein gene influence the risk of type 2 diabetes and insulin resistance in Spanish population. PLoS One, 2012, 7(3), e31853.
[http://dx.doi.org/10.1371/journal.pone.0031853] [PMID: 22396741]
[37]
Brouillette, C.; Bossé, Y.; Pérusse, L.; Gaudet, D.; Vohl, M-C. Effect of liver fatty acid binding protein (FABP) T94A missense mutation on plasma lipoprotein responsiveness to treatment with fenofibrate. J. Hum. Genet., 2004, 49(8), 424-432.
[http://dx.doi.org/10.1007/s10038-004-0171-2] [PMID: 15249972]
[38]
Weickert, M.O.; Loeffelholz, C.V.; Roden, M.; Chandramouli, V.; Brehm, A.; Nowotny, P.; Osterhoff, M.A.; Isken, F.; Spranger, J.; Landau, B.R.; Pfeiffer, A.F.; Möhlig, M.A. Thr94Ala mutation in human liver fatty acid-binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. Am. J. Physiol. Endocrinol. Metab., 2007, 293(4), E1078-E1084.
[http://dx.doi.org/10.1152/ajpendo.00337.2007] [PMID: 17698986]
[39]
Yamada, Y.; Kato, K.; Oguri, M.; Yoshida, T.; Yokoi, K.; Watanabe, S.; Metoki, N.; Yoshida, H.; Satoh, K.; Ichihara, S.; Aoyagi, Y.; Yasunaga, A.; Park, H.; Tanaka, M.; Nozawa, Y. Association of genetic variants with atherothrombotic cerebral infarction in Japanese individuals with metabolic syndrome. Int. J. Mol. Med., 2008, 21(6), 801-808.
[http://dx.doi.org/10.3892/ijmm.21.6.801] [PMID: 18506375]
[40]
Wagh, K.; Bhatia, A.; Alexe, G.; Reddy, A.; Ravikumar, V.; Seiler, M.; Boemo, M.; Yao, M.; Cronk, L.; Naqvi, A.; Ganesan, S.; Levine, A.J.; Bhanot, G. Lactase persistence and lipid pathway selection in the Maasai. PLoS One, 2012, 7(9), e44751.
[http://dx.doi.org/10.1371/journal.pone.0044751] [PMID: 23028602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy