Generic placeholder image

Current Chinese Engineering Science

Editor-in-Chief

ISSN (Print): 2665-9980
ISSN (Online): 2665-9999

Review Article

Current Research Developments of Electromagnetic Joining Technology in China-A Review

Author(s): Yangfan Qin, Hao Jiang, Guangyao Li and Junjia Cui*

Volume 2, Issue 1, 2022

Published on: 28 July, 2021

Article ID: e210921193768 Pages: 16

DOI: 10.2174/2665998001666210601163417

Abstract

With the increasing applications of multi-material structures in lightweight vehicle, traditional joining techniques are highly challenged in joining dissimilar materials. To meet the multimaterial structures requirements of lightweight design, electromagnetic joining (EMJ) technology, including electromagnetic riveting (EMR) and magnetic pulse welding (MPW), developed rapidly in recent years, which can achieve good connection performance for complex-shaped structures and dissimilar materials. This paper presents a comprehensive review of the research progress of the EMJ technology in China. Moreover, this review aims at providing a guideline for researchers engaged in electromagnetic joining technology and other connecting processes to further improve the level of lightweight vehicle design and manufacture. Firstly, the development history and status of EMJ were presented. Then the basic joining principles and characteristics of EMR and MPW were analyzed in detail. Subsequently, the investigation of joints formation mechanism, mechanical properties of joints and equipment development of EMR and MPW techniques were reviewed and analyzed. Specially, the operating principle is described along with various factors affecting the mechanical and microcosmic properties of joints. Finally, the future development trend of the EMJ technology based on the current research progress is highlighted.

Keywords: Electromagnetic riveting, magnetic pulse welding, joining mechanism, mechanical properties, dissimilar materials, joining equipment.

Graphical Abstract
[1]
H. Kasai, Y. Morisada, and H. Fujii, "Dissimilar FSW of immiscible materials: Steel/magnesium", Mater. Sci. Eng. A, vol. 624, pp. 250-255, 2015.
[http://dx.doi.org/10.1016/j.msea.2014.11.060]
[2]
R.A. Witik, J. Payet, V. Michaud, C. Ludwig, and J.E. Manson, "Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications", Compos Part A-Appl S., vol. 42, pp. 1694-1709, 2011.
[http://dx.doi.org/10.1016/j.compositesa.2011.07.024]
[3]
J. Williamsen, and E. Howard, "Video imaging of debris clouds following penetration of lightweight spacecraft materials", Int. J. Impact. Eng., vol. 26, no. 1-10, pp. 865-877, 2001.
[http://dx.doi.org/10.1016/S0734-743X(01)00138-5]
[4]
V. Infante, D.F.O. Braga, F. Duarte, and P.M.G. Moreira, "de M. Freitas and de P. M. S. T. Castro, “Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding”", Int. J. Fatigue, vol. 82, pp. 310-316, 2016.
[http://dx.doi.org/10.1016/j.ijfatigue.2015.06.020]
[5]
H.M. Rao, J. Kang, L. Shi, D.R. Sigler, and B.E. Carlson, "Effect of specimen configuration on fatigue properties of dissimilar aluminum to steel resistance spot welds", Int. J. Fatigue, vol. 116, pp. 13-21, 2018.
[http://dx.doi.org/10.1016/j.ijfatigue.2018.06.009]
[6]
W.S. Slovinsky, and P. Hutapea, "Influence of bolting parameters on the ultimate tensile strength and stiffness of composite-metal joints", Mech. Based Des. Struct., vol. 38, no. 2, pp. 261-271, 2009.
[http://dx.doi.org/10.1080/15397730903476316]
[7]
Y.H. Zhou, H. Yazdani-Nezhad, M.A. McCarthy, X.P. Wan, and C. McCarthy, "A study of intra-laminar damage in double-lap, multi-bolt, composite joints with variable clearance using continuum damage mechanics", Compos. Struct., vol. 116, pp. 441-452, 2014.
[http://dx.doi.org/10.1016/j.compstruct.2014.05.051]
[8]
Y.C. Guo, Y.P. Wei, Z. Yang, C.G. Huang, X.Q. Wu, and Q.Y. Yin, "Nonlinearity of interfaces and force transmission of bolted flange joints under impact loading", Int. J. Impact Eng., vol. 109, pp. 214-223, 2017.
[http://dx.doi.org/10.1016/j.ijimpeng.2017.06.012]
[9]
M.X. Yao, D.J. Zhu, Y.M. Yao, H.A. Zhang, and B. Mobasher, "Experimental study on basalt FRP/steel single-lap joints under different loading rates and temperatures", Compos. Struct., vol. 145, pp. 68-79, 2016.
[http://dx.doi.org/10.1016/j.compstruct.2016.02.061]
[10]
G. Marannano, and B. Zuccarello, "Numerical experimental analysis of hybrid double lap aluminum-CFRP joints", Compos., Part B Eng., vol. 71, pp. 28-39, 2015.
[http://dx.doi.org/10.1016/j.compositesb.2014.11.025]
[11]
N. Chowdhury, W.K. Chiu, J. Wang, and P. Chang, "Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures", Compos. Struct., vol. 121, pp. 315-323, 2015.
[http://dx.doi.org/10.1016/j.compstruct.2014.11.004]
[12]
R. Porcaro, M. Langseth, A.G. Hanssen, H. Zhao, S. Weyer, and H. Hooputra, "Crashworthiness of self-piercing riveted connections", Int. J. Impact Eng., vol. 35, no. 11, pp. 1251-1266, 2008.
[http://dx.doi.org/10.1016/j.ijimpeng.2007.07.008]
[13]
G.Y. Li, H. Jiang, X. Zhang, and J.J. Cui, "Mechanical properties and fatigue behavior of electromagnetic riveted lap joints influenced by shear loading", J. Manuf. Process., vol. 26, pp. 226-239, 2017.
[http://dx.doi.org/10.1016/j.jmapro.2017.02.022]
[14]
M. Skorupa, A. Skorupa, T. Machniewicz, and A. Korbel, "Effect of production variables on the fatigue behaviour of riveted lap joints", Int. J. Fatigue, vol. 32, pp. 996-1003, 2010.
[http://dx.doi.org/10.1016/j.ijfatigue.2009.11.007]
[15]
P.G. Reinhall, S. Ghassaei, and V. Choo, "An analysis of rivet die design in electromagnetic riveting", J. Vib. Acoust. Stress. Reliab. Des., vol. 110, no. 1, p. 65, 1988.
[http://dx.doi.org/10.1115/1.3269482]
[16]
Z.Q. Cao, and H. Liu, "Electromagnetic technology", J Plast Eng., vol. 14, no. 1, pp. 7-7, 2007.
[17]
V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, and M. Kleiner, "Electromagnetic forming-a review", J. Mater. Process. Technol., vol. 211, no. 5, pp. 787-829, 2011.
[http://dx.doi.org/10.1016/j.jmatprotec.2010.12.012]
[18]
H. Park, J. Lee, Y. Lee, J.H. Kim, and D. Kim, "Electromagnetic expansion joining between tubular and flat sheet component", J. Mater. Process. Technol., vol. 273, p. 116246, 2019.
[http://dx.doi.org/10.1016/j.jmatprotec.2019.05.027]
[19]
M. Geier, M.M. José, R. Rossi, P.A.R. Rosa, and P.A.F. Martins, "Interference-fit joining of aluminium tubes by electromagnetic forming", Adv. Mat. Res., vol. 853, pp. 488-493, 2013.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.853.488]
[20]
Z.B. Huang, C.Z. Wei, Z.D. Xu, J.J. Cui, G.Y. Li, and X. Zhang, "Experimental investigation on electromagnetic riveting with Φ6 mm-Q235 Steel Rivets", J. Netshape Form Eng., vol. 9, no. 01, pp. 76-80, 2017.
[21]
Q. Chen, Z.Q. Cao, and X. Sheng, "Study on the miniaturization of electromagnet riveter", Mech. Sci. Tech. Aerosp. Eng., vol. 31, no. 3, pp. 480-486, 2012.
[22]
X. Zhang, "Research on dynamic plastic deformation behavior and microstructure and mechanical properties of rivets in electromagnetic riveting", D. thesis, Harbin Institute of Technology, Harbin, Heilongjiang, China, 2016.
[23]
J.J. Cui, "Development of hand-held electromagnetic riveter", D. thesis, Harbin Institute of Technology, Harbin, Heilongjiang, China, 2008.
[24]
Z.Q. Cao, L.N. Xia, X. Sheng, and G.F. She, "Research on vibration reducing and noise absorbing of electromagnetic riveter", J. Vib. Shock., vol. 18, no. 2, pp. 53-55, 1999.
[25]
M.H. Gao, H.D. Liu, G.K. Xu, Y. Bu, Q.D. Xiao, and C. Huang, "Automatic electromagnetic riveting equipment based on pulsed transformer", Aeronaut Manuf. Tech., vol. 22, pp. 105-107, 2011.
[26]
J.S. Chang, J. Chen, B. Leng, and J.H. Su, "Research progress on electromagnetic pulse welding", Weld. J., vol. 5, pp. 13-17, 2019.
[27]
Z.D. Xu, J.J. Cui, H.P. Yu, and C.F. Li, "Research on the impact velocity of magnetic impulse welding of pipe fitting", Mater. Des., vol. 49, pp. 736-745, 2013.
[http://dx.doi.org/10.1016/j.matdes.2012.12.059]
[28]
J.J. Cui, Y. Li, Q.X.X. Liu, X. Zhang, Z.D. Xu, and G.Y. Li, "Joining of tubular carbon fiber-reinforced plastic/aluminum by magnetic pulse welding", J. Mater. Process. Technol., vol. 264, pp. 273-282, 2019.
[http://dx.doi.org/10.1016/j.jmatprotec.2018.09.018]
[29]
W.D. Wang, G.L. Qin, and S.Q. Xing, Trans China Weld Inst., vol. 38, no. 10, pp. 85-88, 2017.
[30]
S.J. Chen, and X.Q. Jiang, "‘Microstructure evolution during magnetic pulse welding of dissimilar aluminium and magnesium alloys", J. Manuf. Process., vol. 19, pp. 14-21, 2015.
[http://dx.doi.org/10.1016/j.jmapro.2015.04.001]
[31]
J.S. Liang, H. Jiang, J.S. Zhang, X.H. Wu, X. Zhang, G.Y. Li, and J.J. Cui, "Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052", Arch. Civ. Mech. Eng., vol. 19, no. 1, pp. 240-250, 2019.
[http://dx.doi.org/10.1016/j.acme.2018.11.001]
[32]
J.J. Cui, S. Gao, H. Jiang, X.H. Huang, G.X. Lu, and G.Y. Li, "Adhesive bond-electromagnetic rivet hybrid joining technique for CFRP/Al structure: Process, design and property", Compos. Struct., vol. 244, p. 112316, 2020.
[http://dx.doi.org/10.1016/j.compstruct.2020.112316]
[33]
J.J. Cui, B.K. Li, H. Jiang, and G.Y. Li, "Numerical and experimental study on high-speed nailing process for aluminum/steel structures induced by electromagnetic impact", Arch. Civ. Mech. Eng., vol. 20, no. 2, p. 55, 2020.
[http://dx.doi.org/10.1007/s43452-020-00060-y]
[34]
H. Jiang, T. Luo, G.Y. Li, X. Zhang, and J.J. Cui, "Fatigue life assessment of electromagnetic riveted carbon fiber reinforce plastic/aluminum alloy lap joints using Weibull distribution", Int. J. Fatigue, vol. 105, pp. 180-189, 2017.
[http://dx.doi.org/10.1016/j.ijfatigue.2017.08.026]
[35]
H.H. Geng, J.Q. Mao, X. Zhang, G.Y. Li, and J.J. Cui, "Strain rate sensitivity of Al-Fe magnetic pulse welds", J. Mater. Process. Technol., vol. 262, pp. 1-10, 2018.
[http://dx.doi.org/10.1016/j.jmatprotec.2018.06.021]
[36]
H.W. Yang, W.B. Guan, and G.Y. Lu, "Experimental and numerical investigations into col- lapse behavior of hemispherical shells under drop hammer impact", Thin Wall Struct., vol. 124, pp. 48-57, 2018.
[http://dx.doi.org/10.1016/j.tws.2017.11.034]
[37]
X. Zhang, M.Y. Zhang, L.Q. Sun, and C.F. Li, "Numerical simulation and experimental investi- gations on TA1 titanium alloy rivet in electromagnetic riveting", Arch. Civ. Mech. Eng., vol. 18, pp. 887-901, 2018.
[http://dx.doi.org/10.1016/j.acme.2018.01.003]
[38]
E.Y. Liu, Z.S. Fan, W.P. Huang, and J.H. Deng, "Effect of extension on electromagnetic riveting deformation of headless rivet", J Netshape Form Eng., vol. 9, no. 01, pp. 96-102, 2017.
[39]
H. Jiang, G.Y. Li, X. Zhang, and J.J. Cui, "Fatigue and failure mechanism in carbon fiber rein- forced plastics/aluminum alloy single lap joint produced by electromagnetic riveting technique", Compos. Sci. Technol., vol. 152, pp. 1-10, 2017.
[http://dx.doi.org/10.1016/j.compscitech.2017.09.004]
[40]
X. Zhang, H. Jiang, T. Luo, L. Hu, G.Y. Li, and J.J. Cui, "Theoretical and experimental investigation on interference fit in electromagnetic riveting", Int. J. Mech. Sci., vol. 156, pp. 261-271, 2019.
[http://dx.doi.org/10.1016/j.ijmecsci.2019.04.002]
[41]
X. Zhang, H.P. Yu, J. Li, and C.F. Li, "Microstructure investigation and mechanical property analysis in electromagnetic riveting", Int. J. Adv. Manuf. Technol., vol. 78, pp. 1-4, 2015.
[http://dx.doi.org/10.1007/s00170-014-6688-4]
[42]
C.P. Gong, C.H. Zhang, T.Y. Ma, J.H. Deng, and S.H. Fan, "Research on deformation process of 2A10 aluminum alloy rivet head in electromagnetic riveting", J Plast Eng., vol. 27, no. 7, pp. 94-102, 2020.
[43]
J.H. Deng, C. Tang, M.W. Fu, and Y.R. Zhan, "Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting", Mater. Sci. Eng. A, vol. 591, pp. 26-32, 2014.
[http://dx.doi.org/10.1016/j.msea.2013.10.084]
[44]
X. Zhang, H.P. Yu, and C.F. Li, "Multi-filed coupling numerical simulation and experimental investigation in electromagnetic riveting", Int. J. Adv. Manuf. Technol., vol. 73, no. 9-12, pp. 1751-1763, 2014.
[http://dx.doi.org/10.1007/s00170-014-5983-4]
[45]
Q.L. Zhang, Z.Q. Cao, and Y.Q. Chen, "Effect of die angle on electromagnetic riveting interference", Appl. Mech. Mater., vol. 217-219, pp. 1968-1971, 2012.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.217-219.1968]
[46]
R.M. Chen, Z.S. Fan, W.P. Huang, and J.H. Deng, "Effect of dimple structures and concave die on headless rivet deformation in electromagnetic riveting", J. Plast. Eng., vol. 24, no. 5, pp. 25-31, 2017.
[47]
R.R. Boyer, "An overview on the use of titanium in the aero-space industry", Mater. Sci. Eng. A, vol. 213, no. 1-2, pp. 103-114, 1996.
[http://dx.doi.org/10.1016/0921-5093(96)10233-1]
[48]
Y.Q. Ning, B.C. Xie, M.W. Fu, H.Q. Liang, Z.K. Yao, and H.Z. Guo, "Microstructure and superplastic deformation for aerospace Ti alloys associated with a-phase curing behavior", Aerosp. Sci. Technol., vol. 45, pp. 416-421, 2015.
[http://dx.doi.org/10.1016/j.ast.2015.06.010]
[49]
S. Ferraris, A. Venturello, M. Miola, A. Cochis, L. Rimondini, and S. Spriano, "Antibacterial and bioactive nanostructured titanium surfaces for bone integration", Appl. Surf. Sci., vol. 311, pp. 279-291, 2014.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.056]
[50]
N.S. Nemat, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu, "Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling", Mech. Mater., vol. 33, no. 8, pp. 425-439, 2001.
[http://dx.doi.org/10.1016/S0167-6636(01)00063-1]
[51]
S.W. Su, Z.Q. Cao, Z. Zhang, H. Xue, and F.T. He, "Electromagnetic riveting process of titanium alloy structure", Ordnance Mater Sci Eng., vol. 35, no. 03, pp. 27-30, 2012.
[52]
J. J. Cui, L. Q. Sun, L. B. Meng, and M. Y. Zhang, "Research on carbon fiber structure of electromagnetic riveting for titanium alloy rivet", Forging & Stamping Tech., vol. 38, no. 02, pp. 47-52, 2013.
[53]
B.H. Yang, Z.Q. Cao, and Y.J. Zuo, "Investigation of the clearance between the hole and the rivet in TC4 electromagnetic riveted joints", Materials science and technology, 2020. Available from: http://kns.cnki.net/kcms/detail/23.1345.TB.20200623.1434.002.html
[54]
Q.L. Zhang, Z.Q. Cao, L.G. Qin, and Y.Q. Chen, "Numerical Simulation Of Electromagnetic Riveting For Titanium Alloy", Rare Met. Mater. Eng., vol. 42, no. 09, pp. 1832-1837, 2013.
[55]
H. Park, "A study on forced vibration behaviors of composite main wing structure of the 20 seat class small scale WIG craft", Aerosp. Sci. Technol., vol. 29, no. 1, pp. 445-452, 2013.
[http://dx.doi.org/10.1016/j.ast.2013.05.003]
[56]
Y.Q. Guo, C.P. Zhai, F.Z. Li, X.F. Zhu, F. Xu, and X.L. Wu, "Formability, defects and strengthening effect of steel/CFRP structures fabricated by using the differential temperature forming process", Compos. Struct., vol. 316, pp. 32-38, 2019.
[http://dx.doi.org/10.1016/j.compstruct.2019.01.106]
[57]
M.A. McCarthy, Air Space Eur., vol. 3, no. 3–4, pp. 139-142, 2001.
[http://dx.doi.org/10.1016/S1290-0958(01)90077-2]
[58]
V.P. Lawlor, M.A. McCarthy, and W.F. Stanley, "An experimental study of bolt–hole clearance effects in double-lap, multi-bolt composite joints", Compos. Struct., vol. 71, no. 2, pp. 176-190, 2005.
[http://dx.doi.org/10.1016/j.compstruct.2004.09.025]
[59]
B. Egan, C.T. McCarthy, M.A. McCarthy, P.J. Gray, and R.M. Frizzell, "Modelling a single-bolt countersunk composite joint using implicit and explicit finite element analysis", Comput. Mater. Sci., vol. 64, pp. 203-208, 2012.
[http://dx.doi.org/10.1016/j.commatsci.2012.02.008]
[60]
H. Jiang, L.Q. Sun, D.Y. Dong, G.Y. Li, and J.J. Cui, "Microstructure and mechanical property evolution of CFRP/al electromagnetic riveted lap joint in a severe condition", Eng. Struct., vol. 180, pp. 181-191, 2019.
[http://dx.doi.org/10.1016/j.engstruct.2018.11.042]
[61]
H. Jiang, Y.J. Cong, X. Zhang, G.Y. Li, and J.J. Cui, "Fatigue degradation after salt spray ageing of electromagnetically riveted joints for CFRP/Al hybrid structure", Mater. Des., vol. 142, pp. 297-307, 2018.
[http://dx.doi.org/10.1016/j.matdes.2018.01.047]
[62]
Z.Q. Cao, and M. Cardew-Hall, "Interference-fit riveting technique in fiber composite laminates", Aerosp. Sci. Technol., vol. 10, no. 4, pp. 327-330, 2005.
[http://dx.doi.org/10.1016/j.ast.2005.11.003]
[63]
J.J. Cui, D. Y Dong, X. Zhang, X. D. Huang, G. X. Lu, H. Jiang, and G. Y. Li, "Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading", Int. J. Impact Eng., vol. 115, pp. 1-9, 2018.
[http://dx.doi.org/10.1016/j.ijimpeng.2018.01.004]
[64]
H. Jiang, L.Q. Sun, J.S. Liang, G.Y. Li, and J.J. Cui, "Shear failure behavior of CFRP/Al and steel/Al electromagnetic self-piercing riveted joints subject to high-speed loading", Compos. Struct., vol. 230, p. 111500, 2019.
[http://dx.doi.org/10.1016/j.compstruct.2019.111500]
[65]
H. Jiang, Z.B. Hong, G.Y. Li, and J.J. Cui, "Numerical and experiment investigation on joining process and failure be-haviors of CFRP/Al electromagnetic riveted joint", Mech Adv Mater Struc, 2020.
[http://dx.doi.org/10.1080/15376494.2020.1847372]
[66]
H. Jiang, G.Y. Li, X. Zhang, and J.J. Cui, "Fatigue and failure mechanism in carbon fiber reinforced plastics/aluminum alloy single lap joint produced by electromagnetic riveting technique", Compos. Sci. Technol., vol. 152, pp. 1-10, 2017.
[http://dx.doi.org/10.1016/j.compscitech.2017.09.004]
[67]
X. Zhang, H.P. Yu, H. Su, and C.F. Li, "Experimental evaluation on mechanical properties of a riveted structure with electromagnetic riveting", Int. J. Adv. Manuf. Technol., vol. 83, no. 9-12, pp. 2071-2082, 2016.
[http://dx.doi.org/10.1007/s00170-015-7729-3]
[68]
H. Jiang, S. Gao, G.Y. Li, and J.J. Cui, "Structural design of half hollow rivet for electromagnetic self-piercing riveting process of dissimilar materials", Mater. Des., vol. 183, p. 108141, 2019.
[http://dx.doi.org/10.1016/j.matdes.2019.108141]
[69]
J.J. Cui, L. Qi, H. Jiang, G.Y. Li, and X. Zhang, "Numerical and experimental investigations in electromagnetic riveting with different rivet dies", Int. J. Mater. Form., vol. 11, no. 6, pp. 839-853, 2018.
[http://dx.doi.org/10.1007/s12289-017-1394-z]
[70]
H. Jiang, Y.J. Cong, J.S. Zhang, X.H. Wu, G.Y. Li, and J.J. Cui, "Fatigue response of electromagnetic riveted joints with different rivet dies subjected to pull-out loading", Int. J. Fatigue, vol. 129, p. 105238, 2019.
[http://dx.doi.org/10.1016/j.ijfatigue.2019.105238]
[71]
Y. F. Qin, H. Jiang, Y. J. Cong, G. Y. Li, L. Qi, and J. J. Cui, "Rivet die design and optimization for electromagnetic riveting of aluminium alloy joints.", Eng. Optimiz, vol. 53. 2021, pp. 770-788.
[http://dx.doi.org/10.1080/0305215X.2020.1751149]
[72]
L.Q. Sun, "Development of new handheld electromagnetic riveter", M. S. thesis, Harbin Institute of Technology, Harbin, Heilongjiang, China, 2010.
[73]
H. Jiang, C.C. Zeng, G.Y. Li, and J.J. Cui, "Effect of locking mode on mechanical properties and failure behavior of CFRP/Al electromagnetic riveted joint", Compos. Struct., vol. 257. 2020, pp. 113-162.
[http://dx.doi.org/10.1016/j.compstruct.2020.113162]
[74]
J.H. Deng, Y.M. Zheng, C. Tang, Y.R. Zhan, and X.Y. Jiang, "analysis of charge circuit and discharge circuit in electromagnetic riveting", Appl. Mech. Mater., vol. 20, no. 1, pp. 108-112, 2013.
[75]
J.H. Deng, C. Tang, Y.R. Zhan, and X.Y. Jiang, "Distribution of magnetic flux density and magnetic force in EMR", Adv. Mat. Res., vol. 652-654, pp. 2248-2253, 2013.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.652-654.2248]
[76]
J.H. Deng, C. Tang, Y.M. Zheng, and Y.R. Zhan, "effect of coil parameters on rivet deformation in low voltage electromagnetic riveting", Adv Mater Res, 2013.
[77]
J.J. Cui, C.C. Zeng, H. Jiang, and G.Y. Li, "Flat spiral coil design for higher riveting force and energy saving in the electromagnetic riveting process", J Manuf Sci E-T Asme, vol. 141, no. 10, 2019.
[http://dx.doi.org/10.1115/1.4044519]
[78]
H.T. Yan, J.B. Cao, and E.M. Guo, "Design of Electromagnetic heating riveting control system based on DSP", Adv. Mat. Res., vol. 466-467, pp. 1075-1078, 2012.
[79]
J. W. Qiu, and Z. Q. Cao, "research on centering location technology in automatic electromagnetic riveting based on in-dustrial intelligent camera", Aeronaut Manuf Tech, vol. 62, no. 15, pp. 49-54+62, 2019.
[80]
L. Ke, Z. Q. Cao, B. H. Yang, and Y. J. Zuo, "Semi-Automatic electromagnetic riveting bracket with conical structure", Aeronaut Manuf Tech., vol. (22), pp. 61-65, 2017.
[81]
C.C. Zhu, Q.X.X. Liu, Z.G. Wu, and W.L. Gao, "Interfacial microstructure characterization of aluminum/aluminum-lithium joints fabricated by magnetic pulse welding", Mater. Charact., vol. 167, p. 110530, 2020.
[http://dx.doi.org/10.1016/j.matchar.2020.110530]
[82]
H.H. Geng, J.Q. Mao, X. Zhang, G.Y. Li, and J.J. Cui, "Formation mechanism of transition zone and amorphous structure in magnetic pulse welded Al-Fe joint", Mater. Lett., vol. 245, pp. 151-154, 2019.
[http://dx.doi.org/10.1016/j.matlet.2019.02.118]
[83]
Y. M. Cao, S. L. Yang, M. X. Xia, H. B. Liu, Xie C, J, and Zhang Q., "research on al-al electromagnetic pulse welding technology and mechanism", Hot Working Tech., vol. 49, no. 09, pp. 50-53+58, 2020.
[84]
J.J. Cui, W. Yuan, and G.Y. Li, "A study on magnetic pulse welding process for dissimilar sheet metals of autobody", Automot. Eng., vol. 39, no. 01, pp. 113-120, 2017.
[85]
Y.F. Xiong, Z.S. Liao, T.Y. Ma, J.H. Deng, and Z.S. Fan, "Microstructure and properties of aluminum-copper joints fabricated by Outer-channel magnetic pulse welding", J Netshape Form Eng., vol. 11, no. 06, pp. 170-177, 2019.
[86]
J.J. Cui, L. Ye, C.C. Zhu, H.H. Geng, and G.Y. Li, "mechanical and microstructure investigations on magnetic pulse welded dissimilar AA3003-TC4 Joints", J. Mater. Eng. Perform., vol. 29, no. 1, pp. 712-722, 2020.
[http://dx.doi.org/10.1007/s11665-019-04542-w]
[87]
C.C. Zhu, L.Q. Sun, W.L. Gao, G.Y. Li, and J.J. Cui, "The effect of temperature on microstructure and mechanical properties of Al/Mg lap joints manufactured by magnetic pulse welding", J. Mater. Res. Technol., vol. 8, no. 3, pp. 3270-3280, 2019.
[http://dx.doi.org/10.1016/j.jmrt.2019.05.017]
[88]
P. Zhang, M. Kimchi, H. Shao, J.E. Gould, and G.S. Daehn, "Analysis of the electromagnetic impulse joining process with a field concentrator", Numiform, pp. 1253-1258, 2004.
[http://dx.doi.org/10.1063/1.1766701]
[89]
Z.Y. Lu, W.T. Gong, S.J. Chen, T. Yuan, C.L. Kan, and X.Q. Jiang, "Interfacial microstructure and local bonding strength of magnetic pulse welding joint between commercially pure aluminum 1060 and AISI 304 stainless steel", J. Manuf. Process., vol. 46, pp. 59-66, 2019.
[http://dx.doi.org/10.1016/j.jmapro.2019.07.041]
[90]
H.P. Yu, H.Q. Dang, Y.A. Qiu, and W.Z. Zhang, "Effects of key parameters on magnetic pulse welding of 5A02 tube and SS304 tube", Int. J. Adv. Manuf. Technol., vol. 110, no. 9, pp. 1-12, 2020.
[91]
L. L. Kong, and X. H. Li, "Research on the electromagnetic pulse joining process of 5052 Al alloy pipes for sports equipment", Light alloy fabrication tech, vol. 145, no. 2, pp. 59-64, 2017.
[92]
H.P. Yu, Z.D. Xu, Z.S. Fan, Z.X. Zhao, and C.F. Li, "Mechanical property and microstructure of aluminum alloy-steel tubes joint by magnetic pulse welding", Mater. Sci. Eng. A, vol. 561, no. 20, pp. 259-265, 2013.
[http://dx.doi.org/10.1016/j.msea.2012.11.015]
[93]
J. J. Cui, G. Y. Sun, J. R. Xu, Z. D. Xu, and X. D. Huang, J. Mater. Process. Technol., vol. 227, pp. 138-146, 2016.
[http://dx.doi.org/10.1016/j.jmatprotec.2015.08.008]
[94]
J. Broeckhove, L. Willemsens, K. Faes, and W.D. Waele, "Magnetic pulse welding", Sustain Constr Des., vol. 1, pp. 21-28, 2011.
[95]
A. Ben-Artzy, A. Stern, N. Frage, and V. Shribman, "Interface phenomena in aluminum-magnesium magnetic pulse welding", Sci. Technol. Weld. Join., vol. 13, pp. 402-408, 2008.
[http://dx.doi.org/10.1179/174329308X300136]
[96]
H.H. Geng, L.Q. Sun, G.Y. Li, J.J. Cui, L. Huang, and Z.D. Xu, "Fatigue fracture properties of magnetic pulse welded dissimilar Al-Fe lap joints", Int. J. Fatigue, vol. 121, pp. 146-154, 2018.
[http://dx.doi.org/10.1016/j.ijfatigue.2018.12.027]
[97]
H.H. Geng, Z.H. Xia, X. Zhang, G.Y. Li, and J.J. Cui, "Microstructures and mechanical properties of the welded AA5182/HC340LA joint by magnetic pulse welding", Mater. Charact., vol. 138, pp. 229-237, 2018.
[http://dx.doi.org/10.1016/j.matchar.2018.02.018]
[98]
Q.X.X. Liu, Z.H. Xia, J.J. Cui, and G.Y. Li, "Property of magnetic pulse welded joints at high and low temperature cycling experiments", Mater. Sci. Technol., vol. 26, no. 05, pp. 19-25, 2018.
[99]
S.L. Wang, B.B. Zhou, X. Zhang, T. Sun, G.Y. Li, and J.J. Cui, "Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel", Mater. Sci. Eng. A, vol. 788, p. 139425, 2020.
[http://dx.doi.org/10.1016/j.msea.2020.139425]
[100]
B. Xu, H. Ou, Q.X.X. Liu, Z.D. Xu, G.Y. Li, and J.J. Cui, "Property of electromagnetic welded joints of 5052 aluminum alloy and HC420LA high strength steel in salt fog corrosion", Zhongguo Jixie Gongcheng, vol. 30, no. 12, pp. 1506-1511, 2019.
[101]
C.X. Li, Y. Zhou, X. Shi, Z.G. Liao, J. Du, T. Shen, and C.G. Yao, "Magnetic field edge-effect affecting joint macro-morphology in sheet electromagnetic pulse welding", Mater. Manuf. Proces., vol. 35. 2020, pp. 1040-1050.
[http://dx.doi.org/10.1080/10426914.2020.1758332]
[102]
D.C. Peng, Q.X.X. Liu, G.Y. Li, and J.J. Cui, "Investigation on hybrid joining of aluminum alloy sheets: magnetic pulse weld bonding", Int. J. Adv. Manuf. Technol., vol. 104, no. 9-12, pp. 1-10, 2019.
[http://dx.doi.org/10.1007/s00170-019-04215-x]
[103]
F.X. Deng, Q.L. Cao, X.T. Han, and L. Li, "Electromagnetic pulse spot welding of aluminum to stainless steel sheets with a field shaper", Int. J. Adv. Manuf. Technol., vol. 98, no. 5-8, pp. 1-9, 2018.
[http://dx.doi.org/10.1007/s00170-018-2208-2]
[104]
H.Q. Zhang, Z.Y. Yang, and L.L. Ren, "Experimental investigation on structure parameters of E-shaped coil in magnetic pulse welding", Mater. Manuf. Process., vol. 34, no. 15, pp. 1701-1709, 2019.
[http://dx.doi.org/10.1080/10426914.2019.1689263]
[105]
F.X. Deng, Q.L. Cao, X.T. Han, Q. Chen, and L. Li, "Principle and realization of an electromagnetic pulse welding system with a dualstage coil", Int. J. Appl. Electromagn. Mech., vol. 57, no. 4, pp. 1-10, 2018.
[http://dx.doi.org/10.3233/JAE-180006]
[106]
H. Zhang, N. Liu, X.X. Li, F.X. Deng, Q.J. Wang, and H.F. Ding, "A novel field shaper with slow-varying central hole for electromagnetic pulse welding of sheet metal", Int. J. Adv. Manuf. Technol., vol. 108, no. 7-8, pp. 2595-2606, 2020.
[http://dx.doi.org/10.1007/s00170-020-05454-z]
[107]
H.P. Yu, and Y. Tong, "Magnetic pulse welding of aluminum to steel using uniform pressure electromagnetic actuator", Int. J. Adv. Manuf. Technol., vol. 91, no. 5-8, pp. 2257-2265, 2017.
[http://dx.doi.org/10.1007/s00170-016-9928-y]

© 2024 Bentham Science Publishers | Privacy Policy