Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Voxel-wise Functional Connectivity of the Default Mode Network in Epilepsies: A Systematic Review and Meta-Analysis

Author(s): Sisi Jiang, Hechun Li, Linli Liu, Dezhong Yao and Cheng Luo*

Volume 20, Issue 1, 2022

Page: [254 - 266] Pages: 13

DOI: 10.2174/1570159X19666210325130624

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Default Mode Network (DMN) is recognized to be involved in the generation and propagation of epileptic activities in various epilepsies. Converging evidence has suggested disturbed Functional Connectivity (FC) in epilepsies, which was inferred to be related to underlying pathological mechanisms. However, abnormal changes of FC in DMN revealed by different studies are controversial, which obscures the role of DMN in distinct epilepsies.

Objective: The present work aims to investigate the voxel-wise FC in DMN across epilepsies

Methods: A systematic review was conducted on 22 published articles before October 2020, indexed in PubMed and Web of Science. A meta-analysis with a random-effect model was performed using the effect-size signed differential mapping approach. Subgroup analyses were performed in three groups: Idiopathic Generalized Epilepsy (IGE), mixed Temporal Lobe Epilepsy (TLE), and mixed Focal Epilepsy (FE) with different foci.

Results: The meta-analysis suggested commonly decreased FC in mesial prefrontal cortices across different epilepsies. Additionally decreased FC in posterior DMN was observed in IGE. The TLE showed decreased FC in temporal lobe regions and increased FC in the dorsal posterior cingulate cortex. Interestingly, an opposite finding in the ventral and dorsal middle frontal gyrus was observed in TLE. The FE demonstrated increased FC in the cuneus.

Conclusion: The current findings revealed both common and specific alterations of FC in DMN across different epilepsies, highlighting the contribution of these dysfunctions to epileptic activities and cognitive behaviors in patients. Furthermore, the current study provided powerful evidence to support DMN as a potential candidate for effective intervention in epilepsy.

Keywords: Default mode network, resting state, functional connectivity, idiopathic generalized epilepsy, temporal lobe epilepsy, functional magnetic resonance imaging.

Graphical Abstract
[1]
Prodoehl, J.; Burciu, R.G.; Vaillancourt, D.E. Resting state functional magnetic resonance imaging in Parkinson’s disease. Curr. Neurol. Neurosci. Rep., 2014, 14(6), 448.
[http://dx.doi.org/10.1007/s11910-014-0448-6] [PMID: 24744021]
[2]
Sidhu, M.K.; Stretton, J.; Winston, G.P.; Bonelli, S.; Centeno, M.; Vollmar, C.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain, 2013, 136(Pt 6), 1868-1888.
[http://dx.doi.org/10.1093/brain/awt099] [PMID: 23674488]
[3]
Gur, R.E.; McGrath, C.; Chan, R.M.; Schroeder, L.; Turner, T.; Turetsky, B.I.; Kohler, C.; Alsop, D.; Maldjian, J.; Ragland, J.D.; Gur, R.C. An fMRI study of facial emotion processing in patients with schizophrenia. Am. J. Psychiatry, 2002, 159(12), 1992-1999.
[http://dx.doi.org/10.1176/appi.ajp.159.12.1992] [PMID: 12450947]
[4]
De Luca, M.; Beckmann, C.F.; De Stefano, N.; Matthews, P.M.; Smith, S.M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage, 2006, 29(4), 1359-1367.
[http://dx.doi.org/10.1016/j.neuroimage.2005.08.035] [PMID: 16260155]
[5]
Raichle, M.E. The brain’s default mode network. Annu. Rev. Neurosci., 2015, 38, 433-447.
[http://dx.doi.org/10.1146/annurev-neuro-071013-014030]
[6]
Giugni, E.; Vadalà, R.; De Vincentiis, C.; Colica, C.; Bastianello, S. The brain’s default mode network: A mind “sentinel” role? Funct. Neurol., 2010, 25(4), 189-190.
[PMID: 21388577]
[7]
Jackson, R.L.; Cloutman, L.L.; Lambon Ralph, M.A. Exploring distinct default mode and semantic networks using a systematic ICA approach. Cortex, 2019, 113, 279-297.
[http://dx.doi.org/10.1016/j.cortex.2018.12.019] [PMID: 30716610]
[8]
Greicius, M.D.; Krasnow, B.; Reiss, A.L.; Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA, 2003, 100(1), 253-258.
[http://dx.doi.org/10.1073/pnas.0135058100] [PMID: 12506194]
[9]
Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4637-4642.
[http://dx.doi.org/10.1073/pnas.0308627101] [PMID: 15070770]
[10]
Ongür, D.; Lundy, M.; Greenhouse, I.; Shinn, A.K.; Menon, V.; Cohen, B.M.; Renshaw, P.F. Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res., 2010, 183(1), 59-68.
[http://dx.doi.org/10.1016/j.pscychresns.2010.04.008] [PMID: 20553873]
[11]
Luo, C.; Li, Q.; Lai, Y.; Xia, Y.; Qin, Y.; Liao, W.; Li, S.; Zhou, D.; Yao, D.; Gong, Q. Altered functional connectivity in default mode network in absence epilepsy: A resting-state fMRI study. Hum. Brain Mapp., 2011, 32(3), 438-449.
[http://dx.doi.org/10.1002/hbm.21034] [PMID: 21319269]
[12]
Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; Scheffer, I.E.; Zuberi, S.M. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE commission for classification and terminology. Epilepsia, 2017, 58(4), 522-530.
[http://dx.doi.org/10.1111/epi.13670] [PMID: 28276060]
[13]
Gotman, J.; Grova, C.; Bagshaw, A.; Kobayashi, E.; Aghakhani, Y.; Dubeau, F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc. Natl. Acad. Sci. USA, 2005, 102(42), 15236-15240.
[http://dx.doi.org/10.1073/pnas.0504935102] [PMID: 16217042]
[14]
Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med., 1995, 34(4), 537-541.
[http://dx.doi.org/10.1002/mrm.1910340409] [PMID: 8524021]
[15]
Sporns, O. Small-world connectivity, motif composition, and complexity of fractal neuronal connections. Biosystems, 2006, 85(1), 55-64.
[http://dx.doi.org/10.1016/j.biosystems.2006.02.008] [PMID: 16757100]
[16]
Hsiao, F.J.; Yu, H.Y.; Chen, W.T.; Kwan, S.Y.; Chen, C.; Yen, D.J.; Yiu, C.H.; Shih, Y.H.; Lin, Y.Y. Increased intrinsic connectivity of the default mode network in temporal lobe epilepsy: evidence from resting-state MEG Recordings. PLoS One, 2015, 10(6)e0128787
[http://dx.doi.org/10.1371/journal.pone.0128787] [PMID: 26035750]
[17]
McCormick, C.; Quraan, M.; Cohn, M.; Valiante, T.A.; McAndrews, M.P. Default mode network connectivity indicates episodic memory capacity in mesial temporal lobe epilepsy. Epilepsia, 2013, 54(5), 809-818.
[http://dx.doi.org/10.1111/epi.12098] [PMID: 23360362]
[18]
Gauffin, H.; van Ettinger-Veenstra, H.; Landtblom, A.M.; Ulrici, D.; McAllister, A.; Karlsson, T.; Engström, M. Impaired language function in generalized epilepsy: inadequate suppression of the default mode network. Epilepsy Behav., 2013, 28(1), 26-35.
[http://dx.doi.org/10.1016/j.yebeh.2013.04.001] [PMID: 23648277]
[19]
Zhang, Z.; Zhou, X.; Liu, J.; Qin, L.; Ye, W.; Zheng, J. Aberrant executive control networks and default mode network in patients with right-sided temporal lobe epilepsy: A functional and effective connectivity study. Int. J. Neurosci., 2020, 130(7), 683-693.
[http://dx.doi.org/10.1080/00207454.2019.1702545] [PMID: 31851554]
[20]
Zhang, Z.; Lu, G.; Zhong, Y.; Tan, Q.; Liao, W.; Wang, Z.; Wang, Z.; Li, K.; Chen, H.; Liu, Y. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res., 2010, 1323, 152-160.
[http://dx.doi.org/10.1016/j.brainres.2010.01.042] [PMID: 20132802]
[21]
Liao, W.; Zhang, Z.; Pan, Z.; Mantini, D.; Ding, J.; Duan, X.; Luo, C.; Wang, Z.; Tan, Q.; Lu, G.; Chen, H. Default mode network abnormalities in mesial temporal lobe epilepsy: A study combining fMRI and DTI. Hum. Brain Mapp., 2011, 32(6), 883-895.
[http://dx.doi.org/10.1002/hbm.21076] [PMID: 20533558]
[22]
Wang, Z.; Lu, G.; Zhang, Z.; Zhong, Y.; Jiao, Q.; Zhang, Z.; Tan, Q.; Tian, L.; Chen, G.; Liao, W.; Li, K.; Liu, Y. Altered resting state networks in epileptic patients with generalized tonic-clonic seizures. Brain Res., 2011, 1374, 134-141.
[http://dx.doi.org/10.1016/j.brainres.2010.12.034] [PMID: 21167825]
[23]
Luo, C.; Qiu, C.; Guo, Z.; Fang, J.; Li, Q.; Lei, X.; Xia, Y.; Lai, Y.; Gong, Q.; Zhou, D.; Yao, D. Disrupted functional brain connectivity in partial epilepsy: A resting-state fMRI study. PLoS One, 2011, 7(1)e28196
[http://dx.doi.org/10.1371/journal.pone.0028196] [PMID: 22242146]
[24]
Widjaja, E.; Zamyadi, M.; Raybaud, C.; Snead, O.C.; Smith, M.L. Impaired default mode network on resting-state FMRI in children with medically refractory epilepsy. Am. J. Neuroradiol., 2013, 34(3), 552-557.
[http://dx.doi.org/10.3174/ajnr.A3265] [PMID: 22954741]
[25]
Mankinen, K.; Jalovaara, P.; Paakki, J.J.; Harila, M.; Rytky, S.; Tervonen, O.; Nikkinen, J.; Starck, T.; Remes, J.; Rantala, H.; Kiviniemi, V. Connectivity disruptions in resting-state functional brain networks in children with temporal lobe epilepsy. Epilepsy Res., 2012, 100(1-2), 168-178.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.02.010] [PMID: 22418271]
[26]
Haneef, Z.; Lenartowicz, A.; Yeh, H.J.; Engel, J., Jr; Stern, J.M. Effect of lateralized temporal lobe epilepsy on the default mode network. Epilepsy Behav., 2012, 25(3), 350-357.
[http://dx.doi.org/10.1016/j.yebeh.2012.07.019] [PMID: 23103309]
[27]
Kay, B.P.; DiFrancesco, M.W.; Privitera, M.D.; Gotman, J.; Holland, S.K.; Szaflarski, J.P. Reduced default mode network connectivity in treatment-resistant idiopathic generalized epilepsy. Epilepsia, 2013, 54(3), 461-470.
[http://dx.doi.org/10.1111/epi.12057] [PMID: 23293853]
[28]
Doucet, G.E.; Skidmore, C.; Evans, J.; Sharan, A.; Sperling, M.R.; Pustina, D.; Tracy, J.I. Temporal lobe epilepsy and surgery selectively alter the dorsal, not the ventral, default-mode network. Front. Neurol., 2014, 5, 23.
[http://dx.doi.org/10.3389/fneur.2014.00023] [PMID: 24653713]
[29]
Cao, X.; Qian, Z.; Xu, Q.; Shen, J.; Zhang, Z.; Lu, G. Altered intrinsic connectivity networks in frontal lobe epilepsy: A resting-state fMRI study. Comput. Math. Methods Med., 2014, 2014864979
[http://dx.doi.org/10.1155/2014/864979] [PMID: 25525456]
[30]
Xiao, F.; Li, L.; An, D.; Lei, D.; Tang, Y.; Yang, T.; Ren, J.; Chen, S.; Huang, X.; Gong, Q.; Zhou, D. Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): A resting-state fMRI study. Epilepsy Behav., 2015, 45, 234-241.
[http://dx.doi.org/10.1016/j.yebeh.2015.01.016] [PMID: 25825370]
[31]
Wei, H.L.; An, J.; Zeng, L.L.; Shen, H.; Qiu, S.J.; Hu, D.W. Altered functional connectivity among default, attention, and control networks in idiopathic generalized epilepsy. Epilepsy Behav., 2015, 46, 118-125.
[http://dx.doi.org/10.1016/j.yebeh.2015.03.031] [PMID: 25935514]
[32]
Shih, Y.C.; Tseng, C.E.; Lin, F.H.; Liou, H.H.; Tseng, W.Y. Hippocampal atrophy is associated with altered hippocampus-posterior cingulate cortex connectivity in mesial temporal lobe epilepsy with hippocampal sclerosis. Am. J. Neuroradiol., 2017, 38(3), 626-632.
[http://dx.doi.org/10.3174/ajnr.A5039] [PMID: 28104639]
[33]
Li, Q.; Chen, Y.; Wei, Y.; Chen, S.; Ma, L.; He, Z.; Chen, Z. Functional network connectivity patterns between idiopathic generalized epilepsy with myoclonic and absence seizures. Front. Comput. Neurosci., 2017, 11, 38.
[http://dx.doi.org/10.3389/fncom.2017.00038] [PMID: 28588471]
[34]
Li, R.; Ji, G.J.; Yu, Y.; Yu, Y.; Ding, M.P.; Tang, Y.L.; Chen, H.; Liao, W. Epileptic discharge related functional connectivity within and between networks in benign epilepsy with centrotemporal spikes. Int. J. Neural Syst., 2017, 27(7)1750018
[http://dx.doi.org/10.1142/S0129065717500186] [PMID: 28359223]
[35]
Wang, Y.; Li, Y.; Wang, H.; Chen, Y.; Huang, W. Altered default mode network on resting-state fmri in children with infantile spasms. Front. Neurol., 2017, 8, 209.
[http://dx.doi.org/10.3389/fneur.2017.00209] [PMID: 28579971]
[36]
Hu, C.Y.; Gao, X.; Long, L.; Long, X.; Liu, C.; Chen, Y.; Xie, Y.; Liu, C.; Xiao, B.; Hu, Z.Y. Altered DMN functional connectivity and regional homogeneity in partial epilepsy patients: A seventy cases study. Oncotarget, 2017, 8(46), 81475-81484.
[http://dx.doi.org/10.18632/oncotarget.20575] [PMID: 29113406]
[37]
Jiang, L.W.; Qian, R.B.; Fu, X.M.; Zhang, D.; Peng, N.; Niu, C.S.; Wang, Y.H. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study. Epilepsy Behav., 2018, 88, 81-86.
[http://dx.doi.org/10.1016/j.yebeh.2018.06.045] [PMID: 30243110]
[38]
Zanão, T.A.; Lopes, T.M.; de Campos, B.M.; Yasuda, C.L.; Cendes, F. Patterns of default mode network in temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsy Behav.,, 2019, 121(PtB) 106523
[http://dx.doi.org/10.1016/j.yebeh.2019.106523] [PMID: 31645315]
[39]
Zhang, Z.; Zhou, X.; Liu, J.; Qin, L.; Yu, L.; Pang, X.; Ye, W.; Zheng, J. Longitudinal assessment of resting-state fMRI in temporal lobe epilepsy: A two-year follow-up study. Epilepsy Behav.,, 2020, 103(PtA) 106858
[http://dx.doi.org/10.1016/j.yebeh.2019.106858] [PMID: 31899164]
[40]
Radua, J.; Rubia, K.; Canales-Rodríguez, E.J.; Pomarol-Clotet, E.; Fusar-Poli, P.; Mataix-Cols, D. Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Front. Psychiatry, 2014, 5, 13.
[http://dx.doi.org/10.3389/fpsyt.2014.00013] [PMID: 24575054]
[41]
Radua, J.; Mataix-Cols, D.; Phillips, M.L.; El-Hage, W.; Kronhaus, D.M.; Cardoner, N.; Surguladze, S. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur. Psychiatry, 2012, 27(8), 605-611.
[http://dx.doi.org/10.1016/j.eurpsy.2011.04.001] [PMID: 21658917]
[42]
Böhning, D.; Malzahn, U.; Dietz, E.; Schlattmann, P.; Viwatwongkasem, C.; Biggeri, A. Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator. Biostatistics, 2002, 3(4), 445-457.
[http://dx.doi.org/10.1093/biostatistics/3.4.445] [PMID: 12933591]
[43]
Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods, 2006, 11(2), 193-206.
[http://dx.doi.org/10.1037/1082-989X.11.2.193] [PMID: 16784338]
[44]
Dalley, J.W.; Cardinal, R.N.; Robbins, T.W. Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neurosci. Biobehav. Rev., 2004, 28(7), 771-784.
[http://dx.doi.org/10.1016/j.neubiorev.2004.09.006] [PMID: 15555683]
[45]
Eichenbaum, H. Prefrontal-hippocampal interactions in episodic memory. Nat. Rev. Neurosci., 2017, 18(9), 547-558.
[http://dx.doi.org/10.1038/nrn.2017.74] [PMID: 28655882]
[46]
Fahoum, F.; Lopes, R.; Pittau, F.; Dubeau, F.; Gotman, J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia, 2012, 53(9), 1618-1627.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03533.x] [PMID: 22691174]
[47]
Danielson, N.B.; Guo, J.N.; Blumenfeld, H. The default mode network and altered consciousness in epilepsy. Behav. Neurol., 2011, 24(1), 55-65.
[http://dx.doi.org/10.1155/2011/912720] [PMID: 21447899]
[48]
James, G.A.; Tripathi, S.P.; Ojemann, J.G.; Gross, R.E.; Drane, D.L. Diminished default mode network recruitment of the hippocampus and parahippocampus in temporal lobe epilepsy. J. Neurosurg., 2013, 119(2), 288-300.
[http://dx.doi.org/10.3171/2013.3.JNS121041] [PMID: 23706058]
[49]
Lopes, R.; Moeller, F.; Besson, P.; Ogez, F.; Szurhaj, W.; Leclerc, X.; Siniatchkin, M.; Chipaux, M.; Derambure, P.; Tyvaert, L. Study on the relationships between intrinsic functional connectivity of the default mode network and transient epileptic activity. Front. Neurol., 2014, 5, 201.
[http://dx.doi.org/10.3389/fneur.2014.00201] [PMID: 25346721]
[50]
Caballero, J.P.; Scarpa, G.B.; Remage-Healey, L.; Moorman, D.E. Differential effects of dorsal and ventral medial prefrontal cortex inactivation during natural reward seeking, extinction, and cueinduced reinstatement. eNeuro, 2019, 6(5) ENEURO.0296-19.2019.
[http://dx.doi.org/10.1523/ENEURO.0296-19.2019] [PMID: 31519696]
[51]
Gourley, S.L.; Taylor, J.R. Going and stopping: Dichotomies in behavioral control by the prefrontal cortex. Nat. Neurosci., 2016, 19(6), 656-664.
[http://dx.doi.org/10.1038/nn.4275] [PMID: 29162973]
[52]
Kim, M.J.; Gee, D.G.; Loucks, R.A.; Davis, F.C.; Whalen, P.J. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb. Cortex, 2011, 21(7), 1667-1673.
[http://dx.doi.org/10.1093/cercor/bhq237] [PMID: 21127016]
[53]
Chai, X.J.; Whitfield-Gabrieli, S.; Shinn, A.K.; Gabrieli, J.D.; Nieto Castañón, A.; McCarthy, J.M.; Cohen, B.M.; Ongür, D. Abnormal medial prefrontal cortex resting-state connectivity in bipolar disorder and schizophrenia. Neuropsychopharmacology, 2011, 36(10), 2009-2017.
[http://dx.doi.org/10.1038/npp.2011.88] [PMID: 21654735]
[54]
Wang, K.; Jiang, T.; Yu, C.; Tian, L.; Li, J.; Liu, Y.; Zhou, Y.; Xu, L.; Song, M.; Li, K. Spontaneous activity associated with primary visual cortex: A resting-state FMRI study. Cereb. Cortex, 2008, 18(3), 697-704.
[http://dx.doi.org/10.1093/cercor/bhm105] [PMID: 17602140]
[55]
Leech, R.; Sharp, D.J. The role of the posterior cingulate cortex in cognition and disease. Brain, 2014, 137(Pt 1), 12-32.
[http://dx.doi.org/10.1093/brain/awt162] [PMID: 23869106]
[56]
de Pasquale, F.; Della Penna, S.; Snyder, A.Z.; Marzetti, L.; Pizzella, V.; Romani, G.L.; Corbetta, M. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron, 2012, 74(4), 753-764.
[http://dx.doi.org/10.1016/j.neuron.2012.03.031] [PMID: 22632732]
[57]
Vatansever, D.; Manktelow, A.E.; Sahakian, B.J.; Menon, D.K.; Stamatakis, E.A. Angular default mode network connectivity across working memory load. Hum. Brain Mapp., 2017, 38(1), 41-52.
[http://dx.doi.org/10.1002/hbm.23341] [PMID: 27489137]
[58]
Corbetta, M.; Patel, G.; Shulman, G.L. The reorienting system of the human brain: From environment to theory of mind. Neuron, 2008, 58(3), 306-324.
[http://dx.doi.org/10.1016/j.neuron.2008.04.017] [PMID: 18466742]
[59]
Kobayashi, E.; Bagshaw, A.P.; Bénar, C.G.; Aghakhani, Y.; Andermann, F.; Dubeau, F.; Gotman, J. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia, 2006, 47(2), 343-354.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00427.x] [PMID: 16499759]
[60]
Kobayashi, E.; Grova, C.; Tyvaert, L.; Dubeau, F.; Gotman, J. Structures involved at the time of temporal lobe spikes revealed by interindividual group analysis of EEG/fMRI data. Epilepsia, 2009, 50(12), 2549-2556.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02180.x] [PMID: 19552652]
[61]
He, X.; Doucet, G.E.; Sperling, M.; Sharan, A.; Tracy, J.I. Reduced thalamocortical functional connectivity in temporal lobe epilepsy. Epilepsia, 2015, 56(10), 1571-1579.
[http://dx.doi.org/10.1111/epi.13085] [PMID: 26193910]
[62]
Haneef, Z.; Lenartowicz, A.; Yeh, H.J.; Levin, H.S.; Engel, J., Jr; Stern, J.M. Functional connectivity of hippocampal networks in temporal lobe epilepsy. Epilepsia, 2014, 55(1), 137-145.
[http://dx.doi.org/10.1111/epi.12476] [PMID: 24313597]
[63]
Herbet, G.; Lafargue, G.; de Champfleur, N.M.; Moritz-Gasser, S.; le Bars, E.; Bonnetblanc, F.; Duffau, H. Disrupting posterior cingulate connectivity disconnects consciousness from the external environment. Neuropsychologia, 2014, 56, 239-244.
[http://dx.doi.org/10.1016/j.neuropsychologia.2014.01.020] [PMID: 24508051]
[64]
Vanhaudenhuyse, A.; Noirhomme, Q.; Tshibanda, L.J.; Bruno, M.A.; Boveroux, P.; Schnakers, C.; Soddu, A.; Perlbarg, V.; Ledoux, D.; Brichant, J.F.; Moonen, G.; Maquet, P.; Greicius, M.D.; Laureys, S.; Boly, M. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain, 2010, 133(Pt 1), 161-171.
[http://dx.doi.org/10.1093/brain/awp313] [PMID: 20034928]
[65]
Carhart-Harris, R.; Nutt, D. Was it a vision or a waking dream? Front. Psychol., 2014, 5, 255.
[http://dx.doi.org/10.3389/fpsyg.2014.00255] [PMID: 24772095]
[66]
Horovitz, S.G.; Braun, A.R.; Carr, W.S.; Picchioni, D.; Balkin, T.J.; Fukunaga, M.; Duyn, J.H. Decoupling of the brain’s default mode network during deep sleep. Proc. Natl. Acad. Sci. USA, 2009, 106(27), 11376-11381.
[http://dx.doi.org/10.1073/pnas.0901435106] [PMID: 19549821]
[67]
Cocchi, L.; Zalesky, A.; Fornito, A.; Mattingley, J.B. Dynamic cooperation and competition between brain systems during cognitive control. Trends Cogn. Sci., 2013, 17(10), 493-501.
[http://dx.doi.org/10.1016/j.tics.2013.08.006] [PMID: 24021711]
[68]
Sugiura, M.; Shah, N.J.; Zilles, K.; Fink, G.R. Cortical representations of personally familiar objects and places: Functional organization of the human posterior cingulate cortex. J. Cogn. Neurosci., 2005, 17(2), 183-198.
[http://dx.doi.org/10.1162/0898929053124956] [PMID: 15811232]
[69]
Poleon, S.; Szaflarski, J.P. Photosensitivity in generalized epilepsies. Epilepsy Behav., 2017, 68, 225-233.
[http://dx.doi.org/10.1016/j.yebeh.2016.10.040] [PMID: 28215998]
[70]
Huang, W.; Huang, D.; Chen, Z.; Ye, W.; Lv, Z.; Diao, L.; Zheng, J. Alterations in the functional connectivity of a verbal working memory-related brain network in patients with left temporal lobe epilepsy. Neurosci. Lett., 2015, 602, 6-11.
[http://dx.doi.org/10.1016/j.neulet.2015.06.031] [PMID: 26101832]
[71]
Li, H.; Ji, C.; Zhu, L.; Huang, P.; Jiang, B.; Xu, X.; Sun, J.; Chen, Z.; Ding, M.; Zhang, M.; Wang, S. Reorganization of anterior and posterior hippocampal networks associated with memory performance in mesial temporal lobe epilepsy. Clin. Neurophysiol., 2017, 128(5), 830-838.
[http://dx.doi.org/10.1016/j.clinph.2017.02.018] [PMID: 28340432]
[72]
Busler, J.N.; Yanes, J.A.; Bird, R.T.; Reid, M.A.; Robinson, J.L. Differential functional patterns of the human posterior cingulate cortex during activation and deactivation: A meta-analytic connectivity model. Exp. Brain Res., 2019, 237(9), 2367-2385.
[http://dx.doi.org/10.1007/s00221-019-05595-y] [PMID: 31292696]
[73]
Gilmore, A.W.; Nelson, S.M.; McDermott, K.B. A parietal memory network revealed by multiple MRI methods. Trends Cogn. Sci., 2015, 19(9), 534-543.
[http://dx.doi.org/10.1016/j.tics.2015.07.004] [PMID: 26254740]
[74]
Lenroot, R.K.; Giedd, J.N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev., 2006, 30(6), 718-729.
[http://dx.doi.org/10.1016/j.neubiorev.2006.06.001] [PMID: 16887188]
[75]
Voss, P.; Thomas, M.E.; Cisneros-Franco, J.M.; de Villers-Sidani, É. Dynamic brains and the changing rules of neuroplasticity: Implications for learning and recovery. Front. Psychol., 2017, 8, 1657.
[http://dx.doi.org/10.3389/fpsyg.2017.01657] [PMID: 29085312]
[76]
Pascual-Leone, A.; Amedi, A.; Fregni, F.; Merabet, L.B. The plastic human brain cortex. Annu. Rev. Neurosci., 2005, 28, 377-401.
[http://dx.doi.org/10.1146/annurev.neuro.27.070203.144216] [PMID: 16022601]
[77]
Ricci, D.; Mercuri, E.; Barnett, A.; Rathbone, R.; Cota, F.; Haataja, L.; Rutherford, M.; Dubowitz, L.; Cowan, F. Cognitive outcome at early school age in term-born children with perinatally acquired middle cerebral artery territory infarction. Stroke, 2008, 39(2), 403-410.
[http://dx.doi.org/10.1161/STROKEAHA.107.489831] [PMID: 18162627]
[78]
McEwen, B.S.; Morrison, J.H. The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 2013, 79(1), 16-29.
[http://dx.doi.org/10.1016/j.neuron.2013.06.028] [PMID: 23849196]
[79]
Vanni, S.; Tanskanen, T.; Seppä, M.; Uutela, K.; Hari, R. Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2776-2780.
[http://dx.doi.org/10.1073/pnas.041600898] [PMID: 11226316]
[80]
Suppa, A.; Rocchi, L. Visual cortex hyperexcitability contributes to the pathophysiology of the photoparoxysmal response. Clin. Neurophysiol., 2016, 127(10), 3351-3352.
[http://dx.doi.org/10.1016/j.clinph.2016.07.002] [PMID: 27473025]
[81]
Wilkins, A.J.; Bonanni, P.; Porciatti, V.; Guerrini, R. Physiology of human photosensitivity. Epilepsia, 2004, 45(Suppl. 1), 7-13.
[http://dx.doi.org/10.1111/j.0013-9580.2004.451009.x] [PMID: 14706038]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy