Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Poly(diphenylamine) and its Nanohybrids for Chemicals and Biomolecules Analysis: A Review

Author(s): Muthusankar Eswaran, Ragupathy Dhanusuraman, Bavatharani Chokkiah, Pei-Chien Tsai, Saikh Mohammad Wabaidur, Zeid Abdullah Alothman and Vinoth Kumar Ponnusamy*

Volume 18, Issue 5, 2022

Published on: 15 December, 2020

Page: [546 - 562] Pages: 17

DOI: 10.2174/1573411017999201215164018

Price: $65

Open Access Journals Promotions 2
Abstract

Background: This is the first review on Poly(diphenylamine) and its nanohybrids, which covers about 181 references demonstrating the brief discussion on the theoretical studies, chemical, electrochemical and other-phase preparation techniques, polymerization and oxidation-reduction (redox) mechanisms, physicochemical and electrochemical properties along with electrochemical sensors and spectroscopic applications on the detection of chemicals and biomolecules analysis applications.

Objective: The main aim of this detailed report is merely to afford a survey of the literature existing on this multifunctional conducting organic polymer (poly(diphenylamine)) that provokes a pathway to innovations and discoveries in the near future claim its applications in multidisciplinary fields, especially in the detection of chemicals and bio-molecules applications.

Methods: We discussed the overall studies on poly(diphenylamine) and its various nanohybrids, including copolymers, homopolymers, carbon-based, and metal/metal-oxide hybrids. The different synthesis methods of poly(diphenylamine) such as chemical/electrochemical/mechano-chemical polymerization in terms of morphology and electrical conductivity were briefly discussed.

Conclusion: This review manuscript deliberates the various synthesis approaches and applications based on the multifunctional conducting polymer poly(diphenylamine) and its nanohybrids. This review provides an outlook and challenges ahead that ignites spotlight to innovations and discoveries in the near future claims its applications in multidisciplinary fields, particularly in electrochemical sensors and spectroscopic applications towards the detection of chemicals and bio-molecules.

Keywords: Poly(diphenylamine), nano-hybrids, electrochemical sensors, chemicals and bio-molecules analysis, spectroscopy, morphology.

Graphical Abstract
[1]
Tsai, T.H.; Chiou, S.C.; Chen, S.M.; Lin, K.C. Enhanced photoelectrochemical performance of dye-sensitized solar cells base on iodine-PEDOT composited film. Int. J. Electrochem. Sci., 2011, 6, 3938-3950.
[2]
Tsai, T.H.; Chen, T.W.; Chen, S.M. Selective electroanalysis of ascorbic acid using a nickel hexacyanoferrate and Poly (3, 4‐ethylenedioxythiophene) hybrid film modified electrode. Electroanal, 2010, 22, 1655-1662.
[http://dx.doi.org/10.1002/elan.200900610]
[3]
Ragupathy, D.; Gomathi, P.; Lee, S.C.; Al-Deyab, S.S.; Lee, S.H.; Do Ghim, H. One-step synthesis of electrically conductive polyaniline nanostructures by oxidative polymerization method. J. Ind. Eng. Chem., 2012, 18, 1213-1215.
[http://dx.doi.org/10.1016/j.jiec.2012.01.032]
[4]
Ragupathy, D.; Lee, S.C.; Al-Deyab, S.S.; Rajendran, A. Simple and rapid synthesis of polyaniline microrods and its electrical properties. J. Ind. Eng. Chem., 2013, 19, 1082-1085.
[http://dx.doi.org/10.1016/j.jiec.2012.12.018]
[5]
Tsai, T.H.; Chen, T.W.; Chen, S.M.; Lin, K.C. A study of copper (II) hexacyanoferrate-PEDOT films and their sensitivity for ascorbic acid and acetaminophen. Int. J. Electrochem. Sci., 2011, 6, 2058-2071.
[6]
Tsai, T.H.; Chen, T.W.; Chen, S.M.; Lin, K.C. Copper nanoparticles with copper hexacyanoferrate and poly (3, 4-ethylenedioxythiophene) hybrid film modified electrode for hydrogen peroxide detection. Int. J. Electrochem. Sci., 2011, 6, 4628-4637.
[7]
Chen, T.W.; Tsai, T.H.; Chen, S.M.; Lin, K.C. Using PEDOT film modified electrode to monitor iodide and its enhancement of arsenite sensing. Int. J. Electrochem. Sci., 2011, 6, 2043-2057.
[8]
Diaz, A.F.; Logan, J.A. Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, 111-114.
[http://dx.doi.org/10.1016/S0022-0728(80)80081-7]
[9]
Muthusankar, E.; Ragupathy, D. Chitosan based nanocomposite biosensors: A recent review. Sens. Lett., 2018, 16, 81-91.
[http://dx.doi.org/10.1166/sl.2018.3925]
[10]
Park, C.H.; Jang, S.K.; Kim, F.S. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions. Appl. Surf. Sci., 2018, 429, 121-127.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.031]
[11]
Noufi, R.; Nozik, A.J.; White, J.; Warren, L.F. Enhanced stability of photoelectrodes with electrogenerated polyaniline films. J. Electrochem. Soc., 1982, 129, 2261.
[http://dx.doi.org/10.1149/1.2123487]
[12]
Leclerc, M.; D’Aprano, G.; Zotti, G. Structure-property relationships in polyaniline derivatives. Synth. Met., 1993, 55, 1527-1532.
[http://dx.doi.org/10.1016/0379-6779(93)90279-6]
[13]
Berlin, A.A.; Ivanov, A.A.; Mirotvortsev, I.I. Inhibiting activity and thermooxidative stability of the oxidative dehydro‐polycondensation products of diphenylamine. J. Polym. Sci., Polym. Phys. Ed., 1973, 40, 175-181.
[http://dx.doi.org/10.1002/polc.5070400122]
[14]
Sergeyev, V.A.; Nedel’kin, V.I.; Timofeyeva, G.A.; Bakhmutov, V.I.; Yuferov, A.M.; Tyurin, A.G.; Zhuravleva, T.S.; Vannikov, A.V. Synthesis, structure and electrophysical properties of poly (diphenylamine) sulphide. Polymer Sci. USSR, 1987, 29, 1800-1807.
[http://dx.doi.org/10.1016/0032-3950(87)90048-7]
[15]
Terhi, V. Janne Ruokolainen.; Olli, T.; Ikkala.; Pentti Passiniemi.; Heikki Isotalo.; Mika Torkkeli.; Ritva Serimaa. Thermoreversible gels of polyaniline: Viscoelastic and electrical evidence on fusible network structures. Macromolecules, 1997, 30, 4064-4072.
[http://dx.doi.org/10.1021/ma9615056]
[16]
Ten-Chin, W.; Sivakumar, C.; Gopalan, A. Studies on processable conducting blend of poly (diphenylamine) and poly (vinylidene fluoride). Mater. Lett., 2002, 54, 430-441.
[http://dx.doi.org/10.1016/S0167-577X(01)00605-X]
[17]
Zhang, X. Zhang, Jin.; Wang, Rongming.; Liu, Zhongfan. Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon, 2004, 42, 1455-1461.
[http://dx.doi.org/10.1016/j.carbon.2004.01.003]
[18]
Showkat, Ali Md. Lee, Kwang-Pill.; Gopalan, Anantha Iyengar.; Kim, Sang-Ho.; Choi, Seong-Ho.; Sohn, Sang-Ho. Characterization and preparation of new multiwall carbon nanotube/conducting polymer composites by in situ polymerization. J. Appl. Polym. Sci., 2006, 101, 3721-3729.
[http://dx.doi.org/10.1002/app.23359]
[19]
Lu, X.; Chao, D.; Zheng, J.; Chen, J.; Zhang, W.; Wei, Y. Preparation and characterization of polydiphenylamine/multi‐walled carbon nanotube composites. Polym. Int., 2006, 55, 945-950.
[http://dx.doi.org/10.1002/pi.2046]
[20]
Lee, K-P.; Gopalan, A.I.; Kim, K.S.; Santhosh, P. Synthesis and characterization of processable multi-walled carbon nanotubes-sulfonated polydiphenylamine graft copolymers. J. Nanosci. Nanotechnol., 2007, 7(10), 3386-3393.
[http://dx.doi.org/10.1166/jnn.2007.822] [PMID: 18330145]
[21]
Ozkan, S.; Zh, G.P.; Karpacheva, A.V. Orlov.; Dzyubina, M.A. Thermal stability of polydiphenylamine synthesized through oxidative polymerization of diphenylamine. Polym. Sci. Ser. B, 2007, 49, 36-41.
[http://dx.doi.org/10.1134/S1560090407010095]
[22]
Lee, Y-L.; Tsai, H-J.; Chen, L-H. Extension of poly (diphenylamine) monolayer at the air/liquid interface promoted by incorporation of gold nanoparticles. J. Mater. Chem., 2009, 19, 5778-5784.
[http://dx.doi.org/10.1039/b904794h]
[23]
Thongsak, K.; Kunanuruksapong, R.; Sirivat, A.; Lerdwijitjarud, W. Electroactive polydiphenylamine/poly (styrene-block-isoprene-block-styrene) (SIS) blends: Effects of particle concentration and electric field. Mater. Sci. Eng. C, 2011, 31, 206-214.
[http://dx.doi.org/10.1016/j.msec.2010.08.022]
[24]
Ozkan, S.; Zh, E.L.; Dzidziguri, G.P. Karpacheva.; Bondarenko, G.N. Synthesis, structure, and properties of new Cu/polydiphenylamine metallopolymer nanocomposites. Nanotechnol. Russ., 2011, 6, 750-756.
[http://dx.doi.org/10.1134/S1995078011060115]
[25]
Bento, D.C.; Maia, E.C.R.; Rodrigues, P.R.P.; Gregory, J.; Louarn, G.; de Santana, H. Poly (3-alkylthiophenes) and polydiphenylamine copolymers: A comparative study using electrochemical impedance spectroscopy. J. Mater. Sci. Mater. Electron., 2013, 24, 4732-4738.
[http://dx.doi.org/10.1007/s10854-013-1467-9]
[26]
Kunchornsup, W.; Sirivat, A. Electromechanical properties study of 1-butyl-3-methylimidazolium chloride/cellulosic gel blended with polydiphenylamine. Sens. Actuators A Phys., 2014, 220, 249-261.
[http://dx.doi.org/10.1016/j.sna.2014.10.019]
[27]
Baibarac, M. Ioan Baltog.; Ion Smaranda.; Arnaud Magrez. Photochemical processes developed in composite based on highly separated metallic and semiconducting SWCNTs functionalized with polydiphenylamine. Carbon, 2015, 81, 426-438.
[http://dx.doi.org/10.1016/j.carbon.2014.09.075]
[28]
Kim, M.H.; Bae, D.H.; Choi, H.J.; Seo, Y. Synthesis of semiconducting poly (diphenylamine) particles and analysis of their electrorheological properties. Polymer (Guildf.), 2017, 119, 40-49.
[http://dx.doi.org/10.1016/j.polymer.2017.05.017]
[29]
de Lima, J.H.C.; Valezi, D.F.; Batista, A.D.; Bento, D.C.; de Santana, H. Structural stability of poly (3-methylthiophene) and polydiphenylamine blend as an interface applied to hole injector. J. Mater. Sci. Mater. Electron., 2018, 29, 6511-6518.
[http://dx.doi.org/10.1007/s10854-018-8633-z]
[30]
Eremeev, I.S.Zh.; Ozkan, S.; Karpacheva, G.P.; Bondarenko, G.N. Hybrid dispersed magnetic nanomaterial based on polydiphenylamine-2-carboxylic acid and Fe3O4. Nanotechnol. Russ., 2014, 9, 38-44.
[http://dx.doi.org/10.1134/S1995078014010054]
[31]
Ozkana, S.; Dzidzigurib, E.L.; Chernavskiic, P.A.; Karpacheva, G.P.; Efimov, M.N.; Bondarenko, G.N. Metal-polymer nanocomposites based on polydiphenylamine and cobalt nanoparticles. Nanotechnol. Russ., 2013, 7, 452-460.
[http://dx.doi.org/10.1134/S1995078013040113]
[32]
Goto, H.; Koyano, T.; Ikedab, H.; Yoshizaki, R.; Akagi, K. Synthesis and magnetic properties of polydiphenylamine derivative bearing stable radical groups. Polymer (Guildf.), 2004, 45, 4559-4564.
[http://dx.doi.org/10.1016/j.polymer.2004.04.017]
[33]
Lee, J.H.; Choi, H.J. Synthesis of core-shell formed carbonyl iron/polydiphenylamine particles and their rheological response under applied magnetic fields. Colloid Polym. Sci., 2018, 11, 1857-1865.
[http://dx.doi.org/10.1007/s00396-018-4405-9]
[34]
Dong, Y.Z.; Choi, H.J. Synthesis of organic–inorganic poly (diphenylamine)/magnetite composite particles and their magnetorheological response. IEEE Trans. Magn., 2018, 54, 1-4.
[http://dx.doi.org/10.1109/TMAG.2018.2837858]
[35]
Yu, Z.D.; Choi, H.J. Synthesis of smart poly (diphenylamine)/magnetic particle composites and their electric/magnetic stimuli-response. Macromol. Res., 2018, 8, 667-670.
[36]
Smaranda, I.; Benito, A.M.; Maser, W.K.; Baltog, I.; Baibarac, M. Electrochemical grafting of reduced graphene oxide with polydiphenylamine doped with heteropolyanions and its optical properties. J. Phys. Chem. C, 2014, 118, 25704-25717.
[http://dx.doi.org/10.1021/jp507324r]
[37]
Thanneermalai, M.; Jeyaraman, T.; Sivakumar, C.; Gopalan, A.; Vasudevan, T.; Wen, T.C. In situ UV-visible spectroelectrochemical evidences for conducting copolymer formation between diphenylamine and m-methoxyaniline. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2003, 59(9), 1937-1950.
[http://dx.doi.org/10.1016/S1386-1425(02)00441-9] [PMID: 12788448]
[38]
Ming-Sieng, Wu. Ten-Chin Wen.; Gopalan, A. In situ UV-visible spectroelectrochemical studies on the copolymerization of diphenylamine with anthranilic acid. Mater. Chem. Phys., 2002, 74, 58-65.
[http://dx.doi.org/10.1016/S0254-0584(01)00406-0]
[39]
Showkat, A.M. Lee, Kwang-Pill.; Gopalan, A.I.; Kim, S.-H. Synthesis and chiro-optical properties of water processable conducting poly (diphenylamine) nanocomposites. Macromol. Res., 2007, 6, 575-580.
[40]
Chandrasekhar, P.; Jonathan, T.R.G.; Hochstrasser, H.R. Third‐order nonlinear optical properties of poly (diphenyl amine) and poly (4‐amino biphenyl), novel processible conducting polymers. Appl. Phys. Lett., 1991, 14, 1661-1663.
[http://dx.doi.org/10.1063/1.106260]
[41]
Wang, J.; Wang, J.; Zhang, X.; Wang, Z. Assembly of polyaniline nanostructures. Macromol. Rapid Commun., 2007, 1, 84-87.
[http://dx.doi.org/10.1002/marc.200600557]
[42]
Ruokolainen, J. Eerika1inen, H.; Torkkeli, M.; Serimaa, R.; Jussila, M.; Ikkala, O. Comb-shaped supramolecules of emeraldine base form of polyaniline due to coordination with zinc dodecyl benzenesulfonate and their plasticized self-organized structures. Macromolecules, 2000, 25, 9272-9276.
[http://dx.doi.org/10.1021/ma000010k]
[43]
Qiu, Y.; Gao, L. Novel polyaniline/titanium nitride nanocomposite: controllable structures and electrical/electrochemical properties. J. Phys. Chem. B, 2005, 109(42), 19732-19740.
[http://dx.doi.org/10.1021/jp053845b] [PMID: 16853552]
[44]
Genies, E.M.; Lapkowski, M.; Penneau, J.F. Cyclic voltammetry of polyaniline: Interpretation of the middle peak. J. Electroanal. Chem., 1988, 1-2, 97-107.
[http://dx.doi.org/10.1016/0022-0728(88)80351-6]
[45]
Buvaneswari, R.; Gopalana, A.; Vasudevan, T.; Hsing-Lung, W.; Wen, T.C. Deposition, growth processes and characterization of poly (diphenylamine-co-N-methyl aniline). Thin Solid Films, 2004, 458, 77-85.
[http://dx.doi.org/10.1016/j.tsf.2003.11.310]
[46]
Tanaka, J.; Mashita, N.; Mizoguchi, K.; Kume, K. Molecular and electronic structures of doped polyaniline. Synth. Met., 1989, 29, 175-184.
[47]
Nicolau, Y.F.; Djurado, D. Novel crystalline structures of polyaniline. Synth. Met., 1993, 55, 394-401.
[http://dx.doi.org/10.1016/0379-6779(93)90964-X]
[48]
Hayashi, H.; Inoue, H.; Nakao, H.; Hattori, H.; Onouchi, Y. Oxidative polymerization behavior of diphenylamine with bridged structure. Int. J. Polym. Anal. Character., 2012, 17(3), 189-198.
[http://dx.doi.org/10.1080/1023666X.2012.653890]
[49]
Orlov, A.V.Zh.; Ozkan, S.; Karpacheva, G.P. Oxidative polymerization of diphenylamine: A mechanistic study. Polym. Sci. Ser. B, 2006, 48, 11-17.
[http://dx.doi.org/10.1134/S1560090406010039]
[50]
Orlov, A.V.Zh.; Ozkan, S.; Bondarenko, G.N.; Karpacheva, G.P. Oxidative polymerization of diphenylamine: Synthesis and structure of polymers. Polym. Sci. Ser. B, 2006, 48, 5-10.
[http://dx.doi.org/10.1134/S1560090406010027]
[51]
Athawale, A.A.; Kulkarni, M.V. Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens. Actuators B Chem., 2000, 67(1-2), 173-177.
[http://dx.doi.org/10.1016/S0925-4005(00)00394-4]
[52]
Zhang, J.; Liu, C.; Shi, G. Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes. J. Appl. Polym. Sci., 2005, 96, 732-739.
[http://dx.doi.org/10.1002/app.21520]
[53]
do Nascimento, G.M.; Silva, C.H.; Izumi, C.M.; Temperini, M.L. The role of cross-linking structures to the formation of one-dimensional nano-organized polyaniline and their Raman fingerprint. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(3), 869-875.
[http://dx.doi.org/10.1016/j.saa.2008.02.009] [PMID: 18343714]
[54]
Jain, M.; Annapoorni, S. Raman study of polyaniline nanofibers prepared by interfacial polymerization. Synth. Met., 2010, 160, 1727-1732.
[http://dx.doi.org/10.1016/j.synthmet.2010.06.008]
[55]
Cao, Y. Suzhen Li.; Zhijiann Xue.; Ding Guo. Spectroscopic and electrical characterization of some aniline oligomers and polyaniline. Synth. Met., 1986, 16, 305-315.
[http://dx.doi.org/10.1016/0379-6779(86)90167-0]
[56]
Malinauskas, A.; Bron, M.; Holze, R. Electrochemical and Raman spectroscopic studies of electrosynthesized copolymers and bilayer structures of polyaniline and poly (o-phenylenediamine). Synth. Met., 1998, 92, 127-137.
[http://dx.doi.org/10.1016/S0379-6779(98)80102-1]
[57]
Ikkala, O.T.; Piefila, L.O.; Passiniemi, P.; Viti, T.; Tisferholtn, H.; Ahjopalo, L.; Osterholm, J.E. Processible polyaniline complexes due to molecular recognition: Supramolecular structures based on hydrogen bonding and phenyl stacking. Synth. Met., 1997, 84, 55-58.
[http://dx.doi.org/10.1016/S0379-6779(97)80663-7]
[58]
Show-An, C.; Gue-Wuu, H. Structures and properties of the water-soluble self-acid-doped conducting polymer blends: sulfonic acid ring-substituted polyaniline/poly (vinyl alcohol) and poly (aniline-co-N-propanesulfonic acid aniline)/poly (vinyl alcohol). Polymer (Guildf.), 1997, 38, 3333-3346.
[http://dx.doi.org/10.1016/S0032-3861(96)00880-4]
[59]
Song, W.; Dong, F-Y.; Jun, S.; Li, Z.F. Study on polymerization and structure of polydiphenylamine. Chin. J. Chem., 1994, 12, 138-147.
[60]
Li, Z.F.; Kang, E.T.; Neoh, K.G.; Tan, K.L.; Huang, C.C.; Liaw, D.J. Surface structures and adhesive-free adhesion characteristics of polyaniline films after modification by graft copolymerization. Macromolecules, 1997, 30, 3354-3362.
[http://dx.doi.org/10.1021/ma961595e]
[61]
Lee, K-P.; Gopalan, A.I.; Lee, S.H.; Showkat, A.M.; Nho, Y.C. Synergic influence of a surfactant and ultrasonication on the preparation of soluble, conducting polydiphenylamine/silica‐nanoparticle composites. J. Appl. Polym. Sci., 2006, 102, 3912-3918.
[http://dx.doi.org/10.1002/app.24178]
[62]
Nguyen, My. T.; Dao, H. Synthesis, characterization and properties of poly-(3-methyldiphenylamine) and poly (3-methoxydiphenylamine). J. Electroanal. Chem., 1990, 289, 37-53.
[http://dx.doi.org/10.1016/0022-0728(90)87205-X]
[63]
Tan, K.L.; Tan, B.T.G.; Khor, S.H.; Neoh, K.G.; Kang, E.T. The effects of synthesis conditions on the characteristics and chemical structures of polyaniline: A comparative study. J. Phys. Chem. Solids, 1991, 52, 673-680.
[http://dx.doi.org/10.1016/0022-3697(91)90166-W]
[64]
Stejskal, J.; Kratochvil, P.; Jenkins, D.A. The formation of polyaniline and the nature of its structures. Polymer (Guildf.), 1996, 37, 367-369.
[http://dx.doi.org/10.1016/0032-3861(96)81113-X]
[65]
Tran, H M.; D’Arcy, J.; Wang, Y.; Beltramo, J.P.; Veronica, A.S.; Kaner, B.R. The oxidation of aniline to produce “polyaniline”: A process yielding many different nanoscale structures. J. Mater. Chem., 2011, 21, 3534-3550.
[http://dx.doi.org/10.1039/C0JM02699A]
[66]
Furukawa, Y.; Ueda, F.; Hyodo, Y.; Harada, I.; Nakajima, T.; Kawagoe, T. Vibrational spectra and structure of polyaniline. Macromolecules, 1988, 21, 1297-1305.
[http://dx.doi.org/10.1021/ma00183a020]
[67]
Harada, I.; Furukawa, Y.; Ueda, F. Vibrational spectra and structure of polyaniline and related compounds. Synth. Met., 1989, 29, 303-312.
[http://dx.doi.org/10.1016/0379-6779(89)90311-1]
[68]
Sundaram, N.K.; Gaillard, F.; Bouyssoux, G. High-resolution XPS studies of electrochemically synthesized conducting polyaniline films. Synth. Met., 1990, 36, 111-127.
[http://dx.doi.org/10.1016/0379-6779(90)90240-L]
[69]
Pouget, J.P.; Jdzefowicz, M.E.; Epstein, A.J. X-ray structure of polyaniline. Macromolecules, 1991, 24, 779-789.
[http://dx.doi.org/10.1021/ma00003a022]
[70]
Zhu, Y.; Hu, D.; Wan, M.; Jiang, L.; Wei, Y. Conducting and superhydrophobic rambutan‐like hollow spheres of polyaniline. Adv. Mater., 2007, 19, 2092-2096.
[http://dx.doi.org/10.1002/adma.200602135]
[71]
Showkata, A.M.; Leea, K.P.; Gopalana, A.I.; Kim, M.S.; Seong-Ho, C.; Hee-Dong, K. A novel self-assembly approach to form tubular poly (diphenylamine) inside the mesoporous silica. Polymer (Guildf.), 2005, 46, 1804-1812.
[http://dx.doi.org/10.1016/j.polymer.2005.01.003]
[72]
Zhou, C.; Jie, H.; Rong, G. Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures. Macromolecules, 2008, 41, 6473-6479.
[http://dx.doi.org/10.1021/ma800500u]
[73]
Fei, J.; Cui, Y.; Yan, X.; Yang, Y.; Wang, K.; Li, J. Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures. ACS Nano, 2009, 3(11), 3714-3718.
[http://dx.doi.org/10.1021/nn900921v] [PMID: 19883104]
[74]
Kim, M.H.; Hyoung, J.C. Core–shell structured semiconducting poly (diphenylamine)-coated polystyrene microspheres and their electrorheology. Polymer (Guildf.), 2017, 131, 120-131.
[http://dx.doi.org/10.1016/j.polymer.2017.10.037]
[75]
Zhou, C.; Jie, H.; Genping, S.; Rong, G. Fabrication of polyaniline with hierarchical structures in alkaline solution. Eur. Polym. J., 2008, 44, 2850-2858.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.01.025]
[76]
Delvaux, M.; Jannick, D.; Pierre-Yves, S.; Roger, L.; Demoustier-Champagne, S. Chemical and electrochemical synthesis of polyaniline micro-and nano-tubules. Synth. Met., 2000, 113, 275-280.
[http://dx.doi.org/10.1016/S0379-6779(00)00226-5]
[77]
Zhou, C.; Han, J.; Song, G.; Guo, R. Polyaniline hierarchical structures synthesized in aqueous solution: Micromats of nanofibers. Macromolecules, 2007, 40, 7075-7078.
[http://dx.doi.org/10.1021/ma071400a]
[78]
Zoran, D.; Cosmin, L.; Graham, B.A.; Kilmartin, P.A.; Webber, A.; Brown, S.P.; Travas-Sejdic, J. Role of aniline oligomeric nanosheets in the formation of polyaniline nanotubes. Macromolecules, 2010, 43, 662-670.
[79]
Zhou, C.; Han, J.; Guo, R. Synthesis of polyaniline hierarchical structures in a dilute SDS/HCl solution: Nanostructure-covered rectangular tubes. Macromolecules, 2009, 42, 1252-1257.
[http://dx.doi.org/10.1021/ma802191n]
[80]
Xia, H.; Chan, H.S.O.; Xiao, C.; Cheng, D. Self-assembled oriented conducting polyaniline nanotubes. Nanotechnology, 2004, 15, 1807.
[http://dx.doi.org/10.1088/0957-4484/15/12/020]
[81]
Joseph, N.; Varghese, J.; Sebastian, M.T. Self assembled polyaniline nanofibers with enhanced electromagnetic shielding properties. RSC Advances, 2015, 5, 20459-20466.
[http://dx.doi.org/10.1039/C5RA02113H]
[82]
Sun, L-J.; Xiao-Xia, L.; King-Tong, K.L.; Chen, L.; Gu, W.M. Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor. Electrochim. Acta, 2008, 53, 3036-3042.
[http://dx.doi.org/10.1016/j.electacta.2007.11.034]
[83]
Gopalan, A.I.; Lee, K.P.; Ragupathy, D.; Lee, S.H.; Lee, J.W. An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer-silica nanocomposite. Biomaterials, 2009, 30(30), 5999-6005.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.047] [PMID: 19674780]
[84]
Ragupathy, D.; Gopalan, A.; Kim, K.W.; Lee, K.P. Synthesis and characterization of polyaniline grafted multiwalled carbon nanotube loaded Nafion-silica nanocomposite membrane. J. Nanosci. Nanotechnol., 2011, 11(1), 747-750.
[http://dx.doi.org/10.1166/jnn.2011.3220] [PMID: 21446537]
[85]
Gomathi, P.; Ghim, H.D.; Ragupathy, D. Preparation and characterization of conductive chitosan-poly [N-(3-trimethoxysilylpropyl) aniline] hybrid submicrostructures. Macromol. Res., 2011, 19, 442.
[http://dx.doi.org/10.1007/s13233-011-0515-7]
[86]
Ragupathy, D.; Jung, J.P.; Soo, C.L.; Kim, J.C.; Gomathi, P.; Kim, M.K.; Lee, S.M.; Ghim, H.D.; Rajendran, A.; Lee, S.H.; Jeon, K.M. Electrochemical grafting of poly (2, 5-dimethoxy aniline) onto multiwalled carbon nanotubes nanocomposite modified electrode and electrocatalytic oxidation of ascorbic acid. Macromol. Res., 2011, 19, 764-769.
[http://dx.doi.org/10.1007/s13233-011-0802-3]
[87]
Bento, D.C.; Maia, E.C.R.; Cervantes, T.N.M.; Fernandes, R.V.; Di Mauro, E.; Laureto, E.; da Silva, M.A.T.; Duarte, J.L.; Dias, I.F.L.; de Santana, H. Optical and electrical characteristics of poly (3-alkylthiophene) and polydiphenylamine copolymers: Applications in light-emitting devices. Synth. Met., 2012, 162, 2433-2442.
[http://dx.doi.org/10.1016/j.synthmet.2012.12.006]
[88]
Yang, X.; Bin, L.; Haizeng, W.; Baorong, H. Anticorrosion performance of polyaniline nanostructures on mild steel. Prog. Org. Coat., 2010, 69, 267-271.
[http://dx.doi.org/10.1016/j.porgcoat.2010.06.004]
[89]
Liu, X.; Na, W.; Xiaoli, W.; Yuying, Z. A high-performance hierarchical graphene@ polyaniline@ graphene sandwich containing hollow structures for supercapacitor electrodes. ACS Sustain. Chem.& Eng., 2015, 3, 475-482.
[http://dx.doi.org/10.1021/sc5006999]
[90]
Ragupathy, D.; Gopalan, A.I.; Lee, K.P.; Manesh, K.M. Electro-assisted fabrication of layer-by-layer assembled poly (2, 5-dimethoxyaniline)/phosphotungstic acid modified electrode and electrocatalytic oxidation of ascorbic acid. Electrochem. Commun., 2008, 10, 527-530.
[http://dx.doi.org/10.1016/j.elecom.2008.01.025]
[91]
Ragupathy, D.; Soo, C.L.; Al-Deyab, S.S.; Rajendren, A. Electrochemical synthesis of a novel poly (2, 5-dimethoxy aniline) nanorod for ultrasensitive glucose biosensor application. J. Ind. Eng. Chem., 2014, 20, 930-936.
[92]
Xu, H.; Liu, J.; Yong, C.; Jing, T.; Zeting, Z. Facile fabrication of superhydrophobic polyaniline structures and their anticorrosive properties. J. Appl. Polym. Sci., 2016, 2016, 133.
[93]
Eswaran, M.; Dhanusuraman, R.; Tsai, P.C.; Ponnusamy, V.K. One-step preparation of graphitic carbon nitride/Polyaniline/Palladium nanoparticles based nanohybrid composite modified electrode for efficient methanol electro-oxidation. Fuel, 2019, 251, 91-97.
[http://dx.doi.org/10.1016/j.fuel.2019.04.040]
[94]
Li, C-Y.; Ten-Chin, W.; Tzung-Fang, G.; Sheng-Shu, H. A facile synthesis of sulfonated poly (diphenylamine) and the application as a novel hole injection layer in polymer light emitting diodes. Polymer (Guildf.), 2008, 49, 957-964.
[http://dx.doi.org/10.1016/j.polymer.2007.12.031]
[95]
Peng, C-W.; Kung-Chin, C.; Chang-Jian, W.; Mei-Chun, L.; Chien-Hua, H.; Sheng-Chieh, H.; Yu-Yuan, H.; Wei-I, H.; Yen, W.; Jui-Ming, Y. Nano-casting technique to prepare polyaniline surface with biomimetic superhydrophobic structures for anticorrosion application. Electrochim. Acta, 2013, 95, 192-199.
[http://dx.doi.org/10.1016/j.electacta.2013.02.016]
[96]
Wang, L. Ying Huang.; Haijian Huang. N-doped graphene@ polyaniline nanorod arrays hierarchical structures: Synthesis and enhanced electromagnetic absorption properties. Mater. Lett., 2014, 124, 89-92.
[http://dx.doi.org/10.1016/j.matlet.2014.03.066]
[97]
Fan, H.; Ning, Z.; Hao, W.; Xiaofeng, Li.; Jian, X. One step preparation of polyaniline micro/nanohierarchical structures with superhydrophobicity. Mater. Lett., 2012, 78, 42-45.
[http://dx.doi.org/10.1016/j.matlet.2012.03.053]
[98]
Jouad, E.M.; Jourjon, F.; Le Guillanton, G.; Elothmani, D. Removal of metal ions in aqueous solutions by organic polymers: Use of a polydiphenylamine resin. Desalination, 2005, 180, 271-276.
[http://dx.doi.org/10.1016/j.desal.2004.12.039]
[99]
Erasto, A.Z-C.; Claudia, A.H-E.; Estrada-Monjec, A.; Kobayashi, T. Synthesis of diphenylamine-co-aniline copolymers in emulsified systems using a reactive surfactant as the emulsifying agent and aniline monomer. Synth. Met., 2016, 214, 5-13.
[http://dx.doi.org/10.1016/j.synthmet.2016.01.007]
[100]
Li, H.; Xie, K.; Pan, Y.; Yao, M.; Xin, C. Variable emissivity infrared electrochromic device based on polyaniline conducting polymer. Synth. Met., 2009, 159, 1386-1388.
[http://dx.doi.org/10.1016/j.synthmet.2009.02.028]
[101]
Yoon, H. Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials (Basel), 2013, 3(3), 524-549.
[http://dx.doi.org/10.3390/nano3030524] [PMID: 28348348]
[102]
Bagheri, A.; Nateghi, M.R.; Massoumi, A. Electrochemical synthesis of highly electroactive polydiphenylamine/polybenzidine copolymer in aqueous solutions. Synth. Met., 1998, 97, 85-89.
[http://dx.doi.org/10.1016/S0379-6779(98)00090-3]
[103]
Showkat, A.M.; Cao, X.T.; Kim, D.W.; Islam, M.R.; Lim, K.T. Characterization of poly (diphenylamine)-gold nanocomposites obtained by self-assembly. In IOP Conference Series. IOP Conf. Series Mater. Sci. Eng., 2015, 77012007
[http://dx.doi.org/10.1088/1757-899X/77/1/012007]
[104]
Genies, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: A historical survey. Synth. Met., 1990, 36, 139-182.
[http://dx.doi.org/10.1016/0379-6779(90)90050-U]
[105]
Huang, W.S.; Humphrey, B.D.; MacDiarmid, A.G.J. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Chem. Soc. Faraday Trans., 1986, 82, 2385-2400.
[http://dx.doi.org/10.1039/f19868202385]
[106]
Macdiarmid, A.G.; Chiang, J.C.; Halpern, M.; Huang, W.S.; Mu, S.L.; Nanaxakkara, L.D.; Yaniger, S.I. Polyaniline: interconversion of metallic and insulating forms. Mol. Cryst. Liq. Cryst. Sci. Technol., 1985, 121, 173-180.
[http://dx.doi.org/10.1080/00268948508074857]
[107]
Fehér, K.; Inzelt, G. Electrochemical quartz crystal microbalance study of formation and redox transformations of poly (diphenylamine). Electrochim. Acta, 2002, 47, 3551-3559.
[http://dx.doi.org/10.1016/S0013-4686(02)00359-6]
[108]
Inzelt, G. Cyclic voltammetry of solid diphenylamine crystals immobilized on an electrode surface and in the presence of an aqueous solution. J. Solid State Electrochem., 2002, 6, 265-271.
[http://dx.doi.org/10.1007/s100080100223]
[109]
Sankarasubramanian, M.; Santhosh, P.; Gopalan, A.; Vasudevan, T. Copolymer formation between two n‐substituted anilines-electrochemical and spectroelectrochemical studies. J. Macromol. Sci. A, 2004, 41, 1285-1301.
[http://dx.doi.org/10.1081/MA-200029858]
[110]
Chung, C.Y.; Wen, T.C.; Gopalan, A. Identification of electrochromic sites in poly (diphenylamine) using a novel absorbance-potential-wavelength profile. Electrochim. Acta, 2001, 47, 423-431.
[http://dx.doi.org/10.1016/S0013-4686(01)00742-3]
[111]
Dao, L.; Guay, J.; Leclerc, M. Poly (n-arylanilines), synthesis and spectroelectrochemistry. Synth. Met., 1989, 29, 383-388.
[http://dx.doi.org/10.1016/0379-6779(89)90322-6]
[112]
Guay, J.P.; Dao, L.H. Synthesis and characterization of poly (diarylamines): A new class of electrochromic conducting polymers. Macromol., 1990, 23, 3598-3605.
[http://dx.doi.org/10.1021/ma00217a010]
[113]
Santhosh, P.; Gopalan, A.; Vasudevan, T.; Lee, K.P. Preparation and characterization of conducting poly (diphenylamine) entrapped polyurethane network electrolyte. J. Appl. Polym. Sci., 2006, 101, 611-617.
[http://dx.doi.org/10.1002/app.23326]
[114]
Karpacheva, G.; Ozkan, S. Polymer-metal hybrid structures based on polydiphenylamine and Co nanoparticles. Procedia Mat. Sci., 2013, 2, 52-59.
[http://dx.doi.org/10.1016/j.mspro.2013.02.007]
[115]
Goto, H.; Koyano, T.; Ikeda, H.; Yoshizaki, R.; Akagi, K. Synthesis and magnetic properties of polydiphenylamine derivative bearing stable radical groups. Polymer (Guildf.), 2004, 45, 4559-4564.
[http://dx.doi.org/10.1016/j.polymer.2004.04.017]
[116]
Zor, Ş.D.; Cankurtaran, H. QCM humidity sensors based on organic/inorganic nanocomposites of water soluble-conductive poly (diphenylamine sulfonic acid). Int. J. Electrochem. Sci., 2016, 11, 7976-7989.
[117]
Philips, M.F.; Gopalan, A.I.; Lee, K.P. Poly (diphenylamine-co-3-aminobenzonitrile)/palladium as a new nanocatalyst for borohydride fuel cells. J Nanoelectron Optoe., 2010, 5, 175-180.
[http://dx.doi.org/10.1166/jno.2010.1088]
[118]
Li, C.Y.; Wen, T.C.; Guo, T.F.; Hou, S.S. A facile synthesis of sulfonated poly (diphenylamine) and the application as a novel hole injection layer in polymer light emitting diodes. Polymer (Guildf.), 2008, 49, 957-964.
[http://dx.doi.org/10.1016/j.polymer.2007.12.031]
[119]
Chokkiah, B.; Eswaran, M.; Wabaidur, S.M.; Alothman, Z.A. Pei-Chien, T., Ponnusamy, V.K.; Dhanusuraman, R. Novel PDPA-SiO2 nanosphericals network decorated graphene nanosheets composite coated FTO electrode for efficient electro-oxidation of methanol. Fuel, 2020, 279118439
[http://dx.doi.org/10.1016/j.fuel.2020.118439]
[120]
Parsa, A.; Ab Ghani, S. Electrocopolymerization of aniline and ortho-phenylenediamine via facile negative shift of polyaniline redox peaks. Polymer (Guildf.), 2008, 49, 3702-3708.
[http://dx.doi.org/10.1016/j.polymer.2008.06.044]
[121]
Therézio, E.M.; Duarte, J.L.; Laureto, E.; Di Mauro, E.; Dias, I.L.; Marletta, A.; de Santana, H. Analysis of the optical properties of poly(3‐octylthiophene) partially dedoped. J. Phys. Org. Chem., 2011, 24, 640-645.
[http://dx.doi.org/10.1002/poc.1802]
[122]
Baibarac, M.; Baltog, I.; Smaranda, I.; Magrez, A. Photochemical processes developed in composite based on highly separated metallic and semiconducting SWCNTs functionalized with polydiphenylamine. Carbon, 2015, 81, 426-438.
[http://dx.doi.org/10.1016/j.carbon.2014.09.075]
[123]
Muthusankar, E.; Lee, S.C.; Ragupathy, D. Enhanced electron transfer characteristics of surfactant wrapped SnO2 nanorods impregnated poly (diphenylamine) matrix. Sens. Lett., 2018, 16, 911-917.
[http://dx.doi.org/10.1166/sl.2018.4031]
[124]
Xu, Q.; Xu, C.; Wang, Y.; Zhang, W.; Jin, L.; Tanaka, K.; Haraguchi, H.; Itoh, A. Polydiphenylamine-dodecyl sulfate films for the simultaneous amperometric determination of electroinactive anions and cations in ion-exclusion cation-exchange chromatography. Fresenius J. Anal. Chem., 2000, 368(8), 791-796.
[http://dx.doi.org/10.1007/s002160000591] [PMID: 11227565]
[125]
Kor, K.; Zarei, K. Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube–cetyltrimethylammonium bromide–poly (diphenylamine). J. Electroanal. Chem. (Lausanne Switz.), 2014, 733, 39-46.
[http://dx.doi.org/10.1016/j.jelechem.2014.09.013]
[126]
Tsai, T.H.; Ku, S.H.; Chen, S.M.; Lou, B.S.; Ali, M.A.; Al‐Hemaid, F.M. Electropolymerized diphenylamine on functionalized multiwalled carbon nanotube composite film and its application to develop a multifunctional biosensor. Electroanalysis, 2014, 26, 399-408.
[http://dx.doi.org/10.1002/elan.201300495]
[127]
Hua, F.; Ruckenstein, E. Hyperbranched sulfonated polydiphenylamine as a novel self-doped conducting polymer and its pH response. Macromolecules, 2005, 38, 888-898.
[http://dx.doi.org/10.1021/ma047756t]
[128]
Wang, P.; Ni, Y.; Kokot, S. A novel dsDNA/polydiphenylamine-4-sulfonic acid electrochemical biosensor for selective detection of the toxic catechol and related DNA damage. Analyst (Lond.), 2013, 138(4), 1141-1148.
[http://dx.doi.org/10.1039/C2AN36389E] [PMID: 23259155]
[129]
Xu, Q.; Xu, C.; Wang, Y.; Zhang, W.; Jin, L.; Tanaka, K.; Haraguchi, H.; Itoh, A. Simultaneous amperometric detection of electroinactive anions and cations in ion chromatography. Analyst (Lond.), 2000, 125, 1799-1804.
[http://dx.doi.org/10.1039/b005292m]
[130]
Muthusankar, E.; Kumar, S.V.; Rajagopalan, N.; Ragupathy, D. Synthesis and characterization of co-polymer nanocomposite film and its enhanced antimicrobial behavior. Bionanoscience, 2018, 8, 1008-1013.
[http://dx.doi.org/10.1007/s12668-018-0564-x]
[131]
Bagheri, H.; Ayazi, Z.; Es’haghi, A.; Aghakhani, A. Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides. J. Chromatogr. A, 2012, 1222, 13-21.
[http://dx.doi.org/10.1016/j.chroma.2011.11.063] [PMID: 22204935]
[132]
Hayat, U.; Bartlett, P.N.; Dodd, G.H.; Barker, J. Electrochemical synthesis and study of polydiphenylamine. J. Electroanal. Chem. Interfacial Electrochem., 1987, 220, 287-294.
[http://dx.doi.org/10.1016/0022-0728(87)85115-X]
[133]
Comisso, N.; Daolio, S.; Mengoli, G.; Salmaso, R.; Zecchin, S.; Zotti, G. Chemical and electrochemical synthesis and characterization of polydiphenylamine and poly-N-methylaniline. J. Electroanal. Chem. Interfacial Electrochem., 1988, 250, 97-110.
[http://dx.doi.org/10.1016/0022-0728(88)80007-X]
[134]
Dong, S.J.; Song, F.Y.; Li, Z. Electrochemical synthesis and characterization of polydiphenylamine. Chin. J. Chem., 1992, 10, 10-16.
[http://dx.doi.org/10.1002/cjoc.19920100103]
[135]
de SANTANA H.; do Rosário MATos, J.; Temperini, M.L.A. Characterization of polydiphenylamine electrochemically synthesized by spectroscopic and thermal techniques. Polym. J., 1998, 30, 315-321.
[http://dx.doi.org/10.1295/polymj.30.315]
[136]
Wen, T.C.; Chen, J.B.; Gopalan, A. Soluble and methane sulfonic acid doped poly (diphenylamine)-synthesis and characterization. Mater. Lett., 2002, 57, 280-290.
[http://dx.doi.org/10.1016/S0167-577X(02)00779-6]
[137]
Athawale, A.A.; Deore, B.A.; Chabukswar, V.V. Studies on poly (diphenylamine) synthesized electrochemically in nonaqueous media. Mater. Chem. Phys., 1999, 58, 94-100.
[http://dx.doi.org/10.1016/S0254-0584(98)00258-2]
[138]
Massoumi, B.; Najafian, S.; Entezami, A.A. Investigation of conductivity and morphology of poly (diphenylamine-co-aniline) prepared via chemical and electrochemical copolymerization. Polym. Sci. Ser. B, 2010, 52, 270-276.
[http://dx.doi.org/10.1134/S1560090410050027]
[139]
Palaniappan, S.; Chang, Y.T.; Liu, C.M.; Manisankar, P. Template-free mechanochemical route to prepare crystalline and electroactive polydiphenylamine nanostructures. Mater. Chem. Phys., 2011, 129, 948-954.
[http://dx.doi.org/10.1016/j.matchemphys.2011.05.024]
[140]
Raj, M.R.; Anandan, S.; Zhou, M.; Ashokkumar, M. A facile one-step synthesis of hollow polydiphenylamine. Int. J. Polym. Mater., 2013, 62, 23-27.
[http://dx.doi.org/10.1080/00914037.2011.641645]
[141]
Kim, M.H.; Bae, D.H.; Choi, H.J.; Seo, Y. Synthesis of semiconducting poly (diphenylamine) particles and analysis of their electrorheological properties. Polymer (Guildf.), 2017, 119, 40-49.
[http://dx.doi.org/10.1016/j.polymer.2017.05.017]
[142]
Permpool, T.; Sirivat, A.; Aussawasathien, D. Synthesis of polydiphenylamine with tunable size and shape via emulsion polymerization. Polym. Int., 2014, 63, 2076-2083.
[http://dx.doi.org/10.1002/pi.4745]
[143]
Zhao, Y.; Chen, M.; Liu, X.; Xu, T.; Liu, W. Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template. Mater. Chem. Phys., 2005, 91, 518-523.
[http://dx.doi.org/10.1016/j.matchemphys.2004.12.019]
[144]
Lee, K.P.; Showkat, A.M.; Gopalan, A.I.; Kim, S.H.; Choi, S.H. Synthesis of poly (diphenylamine) nanotubes in the channels of MCM-41 through self-assembly. Macromol., 2005, 38, 364-371.
[http://dx.doi.org/10.1021/ma048703e]
[145]
Gopalan, A.I.; Lee, K.P.; Hong, M.H.; Santhosh, P.; Manesh, K.M.; Kim, S.H. Nanostructuring of poly(diphenylamine) inside the galleries of montmorillonite organo clay through self-assembly approach. J. Nanosci. Nanotechnol., 2006, 6(6), 1594-1601.
[http://dx.doi.org/10.1166/jnn.2006.240] [PMID: 17025057]
[146]
Santhosh, P.; Manesh, K.M.; Uthayakumar, S.; Gopalan, A.I.; Lee, K.P. Hollow spherical nanostructured polydiphenylamine for direct electrochemistry and glucose biosensor. Biosens. Bioelectron., 2009, 24(7), 2008-2014.
[http://dx.doi.org/10.1016/j.bios.2008.10.004] [PMID: 19041234]
[147]
Xu, Q.; Xu, C.; Wang, Q.; Tanaka, K.; Toada, H.; Zhang, W.; Jin, L. Application of a single electrode, modified with polydiphenylamine and dodecyl sulfate, for the simultaneous amperometric determination of electro-inactive anions and cations in ion chromatography. J. Chromatogr. A, 2003, 997(1-2), 65-71.
[http://dx.doi.org/10.1016/S0021-9673(03)00112-2] [PMID: 12830877]
[148]
Tsai, Y.T.; Wen, T.C.; Gopalan, A. Tuning the optical sensing of pH by poly (diphenylamine). Sens. Actuators B Chem., 2003, 96, 646-657.
[http://dx.doi.org/10.1016/j.snb.2003.07.009]
[149]
Presa, M.R.; Posadas, D.; Florit, M.I. Conditioning treatment to improve the potentiometric pH response of polydiphenylamine modified electrodes. Sens. Actuators B Chem., 2007, 123, 142-147.
[http://dx.doi.org/10.1016/j.snb.2006.08.002]
[150]
Suganandam, K.; Santhosh, P.; Sankarasubramanian, M.; Gopalan, A.; Vasudevan, T.; Lee, K.P. Fe3+ ion sensing characteristics of polydiphenylamine electrochemical and spectroelectrochemical analysis. Sens. Actuators B Chem., 2005, 105, 223-231.
[http://dx.doi.org/10.1016/j.snb.2004.06.005]
[151]
Santhosh, P.; Gopalan, A.; Vasudevan, T.; Lee, K.P. Platinum particles dispersed poly (diphenylamine) modified electrode for methanol oxidation. Appl. Surf. Sci., 2006, 252, 7964-7969.
[http://dx.doi.org/10.1016/j.apsusc.2005.10.002]
[152]
Manesh, K.M.; Gopalan, A.I.; Lee, K.P.; Santhosh, P.; Song, K.D.; Lee, D.D. Fabrication of functional nanofibrous ammonia sensor. IEEE Trans. NanoTechnol., 2007, 6, 513-518.
[http://dx.doi.org/10.1109/TNANO.2007.903918]
[153]
Santhosh, P.; Manesh, K.M.; Gopalan, A.; Lee, K.P. Novel amperometric carbon monoxide sensor based on multi-wall carbon nanotubes grafted with polydiphenylamine fabrication and performance. Sens. Actuators B Chem., 2007, 125, 92-99.
[http://dx.doi.org/10.1016/j.snb.2007.01.044]
[154]
Ragupathy, D.; Gopalan, A.I.; Lee, K.P. Layer-by-layer electrochemical assembly of poly (diphenylamine)/phosphotungstic acid as ascorbic acid sensor. Mikrochim. Acta, 2009, 166, 303-310.
[http://dx.doi.org/10.1007/s00604-009-0201-z]
[155]
Mutlu, M.M.; Erdoǧdu, G. Selective detection of dopamine with poly (diphenylamine sulfonic acid) modified electrode in the presence of ascorbic acid. J. Anal. Chem., 2011, 66, 660-665.
[http://dx.doi.org/10.1134/S1061934811070082]
[156]
Permpool, T.; Supaphol, P.; Sirivat, A.; Wannatong, L.; Sirivat, A. Polydiphenylamine–polyethylene oxide blends as methanol sensing materials. Adv. Polym. Technol., 2012, 31, 401-413.
[http://dx.doi.org/10.1002/adv.20263]
[157]
Yang, Y.L.; Unnikrishnan, B.; Chen, S.M. Amperometric determination of 4-nitrophenol at multi-walled carbon nanotube-poly (diphenylamine) composite modified glassy carbon electrode. Int. J. Electrochem. Sci., 2011, 6, 3902-3912.
[158]
Philips, M.F.; Gopalan, A.I.; Lee, K.P. Development of a novel cyano group containing electrochemically deposited polymer film for ultrasensitive simultaneous detection of trace level cadmium and lead. J. Hazard. Mater., 2012, 237-238, 46-54.
[http://dx.doi.org/10.1016/j.jhazmat.2012.07.069] [PMID: 22964385]
[159]
Unnikrishnan, B.; Ru, P.L.; Chen, S.M.; Mani, V. Nitrite determination at electrochemically synthesized polydiphenylamine-Pt composite modified glassy carbon electrode. Sens. Actuators B Chem., 2013, 177, 887-892.
[http://dx.doi.org/10.1016/j.snb.2012.11.102]
[160]
Tabrizi, M.A.; Ebrahimi, L. The electrochemical copolymerization of diphenylamine and p-phenylenediamine and its use as a modified electrode for amperometric determination of iodate. J. Electroanal. Chem. (Lausanne Switz.), 2014, 724, 8-14.
[http://dx.doi.org/10.1016/j.jelechem.2014.04.003]
[161]
Permpool, T.; Sirivat, A.; Aussawasathien, D.; Wannatong, L. Development of polydiphenylamine/zeolite Y composite by dealumination process as a sensing material for halogenated solvents. Polym. Plast. Technol. Eng., 2013, 52, 907-920.
[http://dx.doi.org/10.1080/03602559.2013.763371]
[162]
Boukhachem, A.; Yumak, A.; Krichen, S.; Madani, A.; Abderrabba, M.; Petkova, P.; Boubaker, K.; Amlouk, M.; Bouchriha, H. Electrosynthesis and study of some physical properties of conductive and solid-state gas sensing polydiphenylamine. Sens. Actuators A Phys., 2015, 227, 11-20.
[http://dx.doi.org/10.1016/j.sna.2015.03.045]
[163]
Permpool, T.; Sirivat, A.; Aussawasathien, D. Polydiphenylamine/zeolite Y composite as a sensor material for chemical vapors. Sens. Actuators B Chem., 2015, 220, 91-100.
[http://dx.doi.org/10.1016/j.snb.2015.05.062]
[164]
Dinç Zor, Ş.; Cankurtaran, H. Impedimetric humidity sensor based on nanohybrid composite of conducting poly (diphenylamine sulfonic acid). J. Sens., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/5479092]
[165]
Zor, Ş.D.; Cankurtaran, H. Hybrid Composites of Poly (diphenylamine sulfonic acid) and nano-alumina for impedimetric humidity sensors. Int. J. Electrochem. Sci., 2017, 12, 2272-2284.
[166]
Song, H.; Ni, Y.; Kokot, S. A glassy carbon electrode modified with poly (anthranilic acid), poly (diphenylamine sulfonate) and CuO nano-particles for the sensitive determination of hydrogen peroxide. Mikrochim. Acta, 2013, 180, 1263-1270.
[http://dx.doi.org/10.1007/s00604-013-1053-0]
[167]
Muthusankar, E.; Ponnusamy, V.K.; Ragupathy, D. Electrochemically sandwiched poly (diphenylamine)/phosphotungstic acid/graphene nanohybrid as highly sensitive and selective urea biosensor. Synth. Met., 2019, 254, 134-140.
[http://dx.doi.org/10.1016/j.synthmet.2019.06.012]
[168]
Nakhostin, R.; Zarei, K. Simultaneous determination of nitrophenol isomers at multi-walled carbon Nanotube-β-Cyclodextrin-Poly (Diphenylamine) composite modified glassy carbon electrode. Russ. J. Electrochem., 2020, 56, 206-213.
[http://dx.doi.org/10.1134/S1023193520030088]
[169]
Muthusankar, E.; Ragupathy, D. Graphene/Poly (aniline-co-diphenylamine) nanohybrid for ultrasensitive electrochemical glucose sensor. Nano-Struct. Nano-Object., 2019, 20100390
[http://dx.doi.org/10.1016/j.nanoso.2019.100390]
[170]
Bavatharani, C.; Muthusankar, E.; Alothman, Z.A.; Wabaidur, S.M.; Ponnusamy, V.K.; Ragupathy, D. Ultra-high sensitive, selective, non-enzymatic dopamine sensor based on electrochemically active graphene decorated Polydiphenylamine-SiO2 nanohybrid composite. Ceram. Int., 2020, 46, 23276-23281.
[http://dx.doi.org/10.1016/j.ceramint.2020.06.054]
[171]
Muthusankar, E.; Wabaidur, S.M.; Alothman, Z.A.; Johan, M.R.; Ponnusamy, V.K.; Ragupathy, D. Fabrication of amperometric sensor for glucose detection based on phosphotungstic acid-assisted PDPA/ZnO nanohybrid composite. Ionics, 2020, 2020, 1-9.
[172]
Eswaran, M.; Wabaidur, S.M.; Alothman, Z.A.; Dhanusuraman, R.; Ponnusamy, V.K. Improved cyclic retention and high-performance supercapacitive behavior of poly (diphenylamine-co-aniline)/phosphotungstic acid nanohybrid electrode. Int. J. Energy Res., 2020, 2020, 1-9.
[http://dx.doi.org/10.1002/er.5727]
[173]
Muthusankar, E.; Ragupathy, D. Supercapacitive retention of electrochemically active phosphotungstic acid supported poly (diphenylamine)/MnO2 hybrid electrode. Mater. Lett., 2019, 241, 144-147.
[http://dx.doi.org/10.1016/j.matlet.2019.01.071]
[174]
Lefrant, S.; Baibarac, M.; Baltog, I. Raman and FTIR spectroscopy as valuable tools for the characterization of polymer and carbon nanotube based composites. J. Mater. Chem., 2009, 19, 5690-5704.
[http://dx.doi.org/10.1039/b821136a]
[175]
Baibarac, M.; Baltog, I.; Lefrant, S. Recent progress in synthesis, vibrational characterization and applications trend of conjugated polymers/carbon nanotubes composites. Curr. Org. Chem., 2011, 15, 1160-1196.
[http://dx.doi.org/10.2174/138527211795203022]
[176]
Jang, H.S.; Kwon, S.H.; Lee, J.H.; Choi, H.J. Facile fabrication of core-shell typed silica/poly (diphenylamine) composite microparticles and their electro-response. Polymer (Guildf.), 2019.182121851
[http://dx.doi.org/10.1016/j.polymer.2019.121851]
[177]
Manisankar, P.; Ilangeswaran, D. Electrochemical synthesis and spectroelectrochemical behavior of poly (diphenylamine-co-4, 4′-diaminodiphenyl sulfone). Electrochim. Acta, 2010, 55, 6546-6552.
[http://dx.doi.org/10.1016/j.electacta.2010.06.023]
[178]
Smaranda, I.; Baibarac, M.; Baltog, I.; Mevellec, J.Y.; Lefrant, S. Spectroelectrochemical properties of the single walled carbon nanotubes functionalized with polydiphenylamine doped with heteropolyanions. J. Solid State Chem., 2013, 197, 352-360.
[http://dx.doi.org/10.1016/j.jssc.2012.08.015]
[179]
Kubota, M.M.; Sacco, B.L.; Bento, D.C.; de Santana, H. Synthesis and spectroscopic analysis of polydiphenylamine via oxidation with bentonite clay in the solid state. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 80-88.
[http://dx.doi.org/10.1016/j.saa.2015.06.092] [PMID: 26125986]
[180]
Santhosh, P.; Gopalan, A.; Vasudevan, T. In situ UV-visible spectroelectrochemical studies on the copolymerization of diphenylamine with ortho-methoxy aniline. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2003, 59(7), 1427-1439.
[http://dx.doi.org/10.1016/S1386-1425(02)00284-6] [PMID: 12714067]
[181]
Santhosh, P.; Sankarasubramanian, M.; Thanneermalai, M.; Gopalan, A.; Vasudevan, T. Electrochemical, spectroelectrochemical and spectroscopic evidences for copolymer formation between diphenylamine and m-toluidine. Mater. Chem. Phys., 2004, 85, 316-328.
[http://dx.doi.org/10.1016/j.matchemphys.2004.01.021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy