Review Article

Fak 和 Fak 抑制剂的新见解

卷 28, 期 17, 2021

发表于: 03 November, 2020

页: [3318 - 3338] 页: 21

弟呕挨: 10.2174/0929867327666201103162239

价格: $65

conference banner
摘要

背景:黏附斑激酶(Focal adhesion kinase, Fak)是一种细胞质蛋白酪氨酸激酶,在不同的实体癌中过表达和激活;它在转移形成、细胞迁移、侵袭和血管生成中发挥了重要作用,因此被认为是癌症治疗的潜在靶点,特别是在转移阶段。近年来,不同的研究强调了新的Fak抑制剂作为潜在抗癌药物的重要性,但其他研究证明了其在与心脏功能或病毒感染相关的不同病理中的作用。 方法:一项广泛的文献研究(104篇参考文献)已经完成了Fak的结构,它在肿瘤发展中的重要性,但也在目前正在研究的其他病理中。因此,目前正在进行临床研究的化合物使用适当的数据库进行处理。最后,对目前临床前研究的主要化学支架进行了分析,重点分析了其分子结构和活性结构关系(SAR)。 结果:目前,只有少数可逆atp竞争抑制剂正在进行临床前研究和临床试验。其他化合物,与不同的化学支架,研究获得更活跃和选择性的Fak抑制剂。这篇综述综述了Fak在癌症和其他病理中的不同功能;今天的临床试验化合物和最近的化学支架(也包括在专利)给出了最有趣的结果进行了研究。此外,还报道了PROTAC分子。 结论:尽管已经从Fak抑制剂和其他不同的抗癌药物之间的关联中获得了有希望的信息,但所有报道的结果表明,需要进行更多的研究来设计和合成新的选择性和更活性的化合物。此外,在核水平和非癌细胞中,其他重要的作用被证明,使这种蛋白质成为药物化学中越来越重要的靶点。

关键词: 病灶粘附激酶,Fak抑制剂,转移,癌症治疗,临床试验,PROTACS

[1]
Schaller, M.D.; Parsons, J.T. Focal adhesion kinase: an integrin-linked protein tyrosine kinase. Trends Cell Biol., 1993, 3(8), 258-262.[http://dx.doi.org/10.1016/0962-8924(93)90053-4] [PMID: 14731743]
[2]
Schlaepfer, D.D.; Hanks, S.K.; Hunter, T.; van der Geer, P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 1994, 372(6508), 786-791.[http://dx.doi.org/10.1038/372786a0] [PMID: 7997267]
[3]
Schaller, M.D. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J. Cell Sci., 2010, 123(Pt 7), 1007-1013.[http://dx.doi.org/10.1242/jcs.045112] [PMID: 20332118]
[4]
Parsons, J.T.; Slack-Davis, J.; Tilghman, R.; Roberts, W.G. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin. Cancer Res., 2008, 14(3), 627-632.[http://dx.doi.org/10.1158/1078-0432.CCR-07-2220] [PMID: 18245520]
[5]
Shanthi, E.; Krishna, M.H.; Arunesh, G.M.; Venkateswara Reddy, K.; Sooriya Kumar, J.; Viswanadhan, V.N. Focal adhesion kinase inhibitors in the treatment of metastatic cancer: a patent review. Expert Opin. Ther. Pat., 2014, 24(10), 1077-1100.[http://dx.doi.org/10.1517/13543776.2014.948845] [PMID: 25113248]
[6]
Parsons, J.T. Focal adhesion kinase: the first ten years. J. Cell Sci., 2003, 116(Pt 8), 1409-1416.[http://dx.doi.org/10.1242/jcs.00373] [PMID: 12640026]
[7]
Guan, J.L.; Trevithick, J.E.; Hynes, R.O. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul., 1991, 2(11), 951-964.[http://dx.doi.org/10.1091/mbc.2.11.951] [PMID: 1725602]
[8]
Schwock, J.; Dhani, N.; Hedley, D.W. Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin. Ther. Targets, 2010, 14(1), 77-94.[http://dx.doi.org/10.1517/14728220903460340] [PMID: 20001212]
[9]
Lv, P.C.; Jiang, A.Q.; Zhang, W.M.; Zhu, H.L. FAK inhibitors in Cancer, a patent review. Expert Opin. Ther. Pat., 2018, 28(2), 139-145.[http://dx.doi.org/10.1080/13543776.2018.1414183] [PMID: 29210300]
[10]
Cary, L.A.; Guan, J.L. Focal adhesion kinase in integrin-mediated signaling. Front. Biosci., 1999, 4(1-3)[http://dx.doi.org/10.2741/Cary] [PMID: 9889179]
[11]
Reiske, H.R.; Zhao, J.; Han, D.C.; Cooper, L.A.; Guan, J.L. Analysis of FAK-associated signaling pathways in the regulation of cell cycle progression. FEBS Lett., 2000, 486(3), 275-280.[http://dx.doi.org/10.1016/S0014-5793(00)02295-X] [PMID: 11119718]
[12]
McLean, G.W.; Carragher, N.O.; Avizienyte, E.; Evans, J.; Brunton, V.G.; Frame, M.C. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat. Rev. Cancer, 2005, 5(7), 505-515.[http://dx.doi.org/10.1038/nrc1647] [PMID: 16069815]
[13]
Golubovskaya, V.M.; Conway-Dorsey, K.; Edmiston, S.N.; Tse, C.K.; Lark, A.A.; Livasy, C.A.; Moore, D.; Millikan, R.C.; Cance, W.G. FAK overexpression and p53 mutations are highly correlated in human breast cancer. Int. J. Cancer, 2009, 125(7), 1735-1738.[http://dx.doi.org/10.1002/ijc.24486] [PMID: 19521985]
[14]
Lim, S.T.; Chen, X.L.; Lim, Y.; Hanson, D.A.; Vo, T.T.; Howerton, K.; Larocque, N.; Fisher, S.J.; Schlaepfer, D.D.; Ilic, D. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol. Cell, 2008, 29(1), 9-22.[http://dx.doi.org/10.1016/j.molcel.2007.11.031] [PMID: 18206965]
[15]
Sulzmaier, F.J.; Jean, C.; Schlaepfer, D.D. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer, 2014, 14(9), 598-610.[http://dx.doi.org/10.1038/nrc3792] [PMID: 25098269]
[16]
Goode, E.L.; Chenevix-Trench, G.; Song, H.; Ramus, S.J.; Notaridou, M.; Lawrenson, K.; Widschwendter, M.; Vierkant, R.A.; Larson, M.C.; Kjaer, S.K.; Birrer, M.J.; Berchuck, A.; Schildkraut, J.; Tomlinson, I.; Kiemeney, L.A.; Cook, L.S.; Gronwald, J.; Garcia-Closas, M.; Gore, M.E.; Campbell, I.; Whittemore, A.S.; Sutphen, R.; Phelan, C.; Anton-Culver, H.; Pearce, C.L.; Lambrechts, D.; Rossing, M.A.; Chang-Claude, J.; Moysich, K.B.; Goodman, M.T.; Dörk, T.; Nevanlinna, H.; Ness, R.B.; Rafnar, T.; Hogdall, C.; Hogdall, E.; Fridley, B.L.; Cunningham, J.M.; Sieh, W.; McGuire, V.; Godwin, A.K.; Cramer, D.W.; Hernandez, D.; Levine, D.; Lu, K.; Iversen, E.S.; Palmieri, R.T.; Houlston, R.; van Altena, A.M.; Aben, K.K.; Massuger, L.F.; Brooks-Wilson, A.; Kelemen, L.E.; Le, N.D.; Jakubowska, A.; Lubinski, J.; Medrek, K.; Stafford, A.; Easton, D.F.; Tyrer, J.; Bolton, K.L.; Harrington, P.; Eccles, D.; Chen, A.; Molina, A.N.; Davila, B.N.; Arango, H.; Tsai, Y.Y.; Chen, Z.; Risch, H.A.; McLaughlin, J.; Narod, S.A.; Ziogas, A.; Brewster, W.; Gentry-Maharaj, A.; Menon, U.; Wu, A.H.; Stram, D.O.; Pike, M.C.; Beesley, J.; Webb, P.M.; Chen, X.; Ekici, A.B.; Thiel, F.C.; Beckmann, M.W.; Yang, H.; Wentzensen, N.; Lissowska, J.; Fasching, P.A.; Despierre, E.; Amant, F.; Vergote, I.; Doherty, J.; Hein, R.; Wang-Gohrke, S.; Lurie, G.; Carney, M.E.; Thompson, P.J.; Runnebaum, I.; Hillemanns, P.; Dürst, M.; Antonenkova, N.; Bogdanova, N.; Leminen, A.; Butzow, R.; Heikkinen, T.; Stefansson, K.; Sulem, P.; Besenbacher, S.; Sellers, T.A.; Gayther, S.A.; Pharoah, P.D. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat. Genet., 2010, 42(10), 874-879.[http://dx.doi.org/10.1038/ng.668] [PMID: 20852632]
[17]
Corsi, J.M.; Rouer, E.; Girault, J.A.; Enslen, H. Organization and post-transcriptional processing of focal adhesion kinase gene. BMC Genomics, 2006, 7, 198.[http://dx.doi.org/10.1186/1471-2164-7-198] [PMID: 16889663]
[18]
Cance, W.G.; Golubovskaya, V.M. Focal adhesion kinase versus p53: apoptosis or survival? Sci. Signal., 2008, 1(20), pe22.[http://dx.doi.org/10.1126/stke.120pe22] [PMID: 18493017]
[19]
Walker, S.; Foster, F.; Wood, A.; Owens, T.; Brennan, K.; Streuli, C.H.; Gilmore, A.P. Oncogenic activation of FAK drives apoptosis suppression in a 3D-culture model of breast cancer initiation. Oncotarget, 2016, 7(43), 70336-70352.[http://dx.doi.org/10.18632/oncotarget.11856] [PMID: 27611942]
[20]
Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474, 609-615.[http://dx.doi.org/10.1038/nature10166]
[21]
Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70.[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[22]
Ward, K.K.; Tancioni, I.; Lawson, C.; Miller, N.L.G.; Jean, C.; Chen, X.L.; Uryu, S.; Kim, J.; Tarin, D.; Stupack, D.G.; Plaxe, S.C.; Schlaepfer, D.D. Inhibition of focal adhesion kinase (FAK) activity prevents anchorage-independent ovarian carcinoma cell growth and tumor progression. Clin. Exp. Metastasis, 2013, 30(5), 579-594.[http://dx.doi.org/10.1007/s10585-012-9562-5] [PMID: 23275034]
[23]
Li, S.; Huang, X.; Zhang, D.; Huang, Q.; Pei, G.; Wang, L.; Jiang, W.; Hu, Q.; Tan, R.; Hua, Z.C. Requirement of PEA3 for transcriptional activation of FAK gene in tumor metastasis. PLoS One, 2013, 8(11), e79336.[http://dx.doi.org/10.1371/journal.pone.0079336] [PMID: 24260201]
[24]
Lim, S.T. Nuclear FAK: a new mode of gene regulation from cellular adhesions. Mol. Cells, 2013, 36(1), 1-6.[http://dx.doi.org/10.1007/s10059-013-0139-1] [PMID: 23686429]
[25]
Zhou, J.; Yi, Q.; Tang, L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. J. Exp. Clin. Cancer Res., 2019, 38(1), 250.[http://dx.doi.org/10.1186/s13046-019-1265-1] [PMID: 31186061]
[26]
Lim, S.T.; Chen, X.L.; Tomar, A.; Miller, N.L.; Yoo, J.; Schlaepfer, D.D. Knock-in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility-polarity but not cell proliferation. J. Biol. Chem., 2010, 285(28), 21526-21536.[http://dx.doi.org/10.1074/jbc.M110.129999] [PMID: 20442405]
[27]
Sun, S.; Wu, H.J.; Guan, J.L. Nuclear FAK and its kinase activity regulate VEGFR2 transcription in angiogenesis of adult mice. Sci. Rep., 2018, 8(1), 2550.[http://dx.doi.org/10.1038/s41598-018-20930-z] [PMID: 29416084]
[28]
Canel, M.; Byron, A.; Sims, A.H.; Cartier, J.; Patel, H.; Frame, M.C.; Brunton, V.G.; Serrels, B.; Serrels, A. Nuclear Fak and Runx1 cooperate to regulate IGFBP3, cell-cycle progression, and tumor growth. Cancer Res., 2017, 77(19), 5301-5312.[http://dx.doi.org/10.1158/0008-5472.CAN-17-0418] [PMID: 28807942]
[29]
Serrels, A.; Lund, T.; Serrels, B.; Byron, A.; McPherson, R.C.; von Kriegsheim, A.; Gómez-Cuadrado, L.; Canel, M.; Muir, M.; Ring, J.E.; Maniati, E.; Sims, A.H.; Pachter, J.A.; Brunton, V.G.; Gilbert, N.; Anderton, S.M.; Nibbs, R.J.B.; Frame, M.C. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell, 2015, 163(1), 160-173.[http://dx.doi.org/10.1016/j.cell.2015.09.001] [PMID: 26406376]
[30]
Ceccarelli, D.F.J.; Song, H.K.; Poy, F.; Schaller, M.D.; Eck, M.J. Crystal structure of the FERM domain of focal adhesion kinase. J. Biol. Chem., 2006, 281(1), 252-259.[http://dx.doi.org/10.1074/jbc.M509188200] [PMID: 16221668]
[31]
Leu, T.H.; Maa, M.C. Tyr-863 phosphorylation enhances focal adhesion kinase autophosphorylation at Tyr-397. Oncogene, 2002, 21(46), 6992-7000.[http://dx.doi.org/10.1038/sj.onc.1205904] [PMID: 12370821]
[32]
van Nimwegen, M.J.; van de Water, B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol., 2007, 73(5), 597-609.[http://dx.doi.org/10.1016/j.bcp.2006.08.011] [PMID: 16997283]
[33]
Mitra, S.K.; Schlaepfer, D.D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol., 2006, 18(5), 516-523.[http://dx.doi.org/10.1016/j.ceb.2006.08.011] [PMID: 16919435]
[34]
Jain, M.H.; Somani, R.R. Role of focal adhesion kinase inhibitors as anti-cancer agents. World J. Pharma. Res., 2016, 5(11), 1585-1602.[http://dx.doi.org/10.20959/wjpr201611-7367]
[35]
Schlaepfer, D.D.; Mitra, S.K.; Ilic, D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta, 2004, 1692(2-3), 77-102.[http://dx.doi.org/10.1016/j.bbamcr.2004.04.008] [PMID: 15246681]
[36]
Canel, M.; Serrels, A.; Miller, D.; Timpson, P.; Serrels, B.; Frame, M.C.; Brunton, V.G. Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res., 2010, 70(22), 9413-9422.[http://dx.doi.org/10.1158/0008-5472.CAN-10-1454] [PMID: 21045155]
[37]
Zhao, J.; Guan, J.L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev., 2009, 28(1-2), 35-49.[http://dx.doi.org/10.1007/s10555-008-9165-4] [PMID: 19169797]
[38]
Golubovskaya, V.M. Targeting focal adhesion kinase in cancer-part I. Anticancer. Agents Med. Chem., 2010, 10(10), 713.[http://dx.doi.org/10.2174/187152010794728693] [PMID: 21348852]
[39]
Kato, A.; Kato, K.; Miyazawa, H.; Kobayashi, H.; Noguchi, N.; Kawashiri, S. Focal adhesion kinase (Fak) overexpression and phosphorylation in oral squamous cell carcinoma and their clinicopathological significance. Pathol. Oncol. Res., 2020, 26(3), 1659-1667.[http://dx.doi.org/10.1007/s12253-019-00732-y] [PMID: 31522363]
[40]
Zhou, Y.; Shu, C.; Huang, Y. Fibronectin promotes cervical cancer tumorigenesis through activating FAK signaling pathway. J. Cell. Biochem., 2019, 120(7), 10988-10997.[http://dx.doi.org/10.1002/jcb.28282] [PMID: 30977220]
[41]
Fujii, T.; Koshikawa, K.; Nomoto, S.; Okochi, O.; Kaneko, T.; Inoue, S.; Yatabe, Y.; Takeda, S.; Nakao, A. Focal adhesion kinase is overexpressed in hepatocellular carcinoma and can be served as an independent prognostic factor. J. Hepatol., 2004, 41(1), 104-111.[http://dx.doi.org/10.1016/j.jhep.2004.03.029] [PMID: 15246215]
[42]
Chen, Y.; Li, Q.; Tu, K.; Wang, Y.; Wang, X.; Liu, D.; Chen, C.; Liu, D.; Yang, R.; Qiu, W.; Kang, N. Focal adhesion kinase promotes hepatic stellate cell activation by regulating plasma membrane localization of TGFβ receptor 2. Hepatol Commun, 2019, 4(2), 268-283.[http://dx.doi.org/10.1002/hep4.1452] [PMID: 32025610]
[43]
Zhang, J.; Hochwald, S.N. The role of FAK in tumor metabolism and therapy. Pharmacol. Ther., 2014, 142(2), 154-163.[http://dx.doi.org/10.1016/j.pharmthera.2013.12.003] [PMID: 24333503]
[44]
Golubovskaya, V.M.; Finch, R.; Kweh, F.; Massoll, N.A.; Campbell-Thompson, M.; Wallace, M.R.; Cance, W.G. p53 regulates FAK expression in human tumor cells. Mol. Carcinog., 2008, 47(5), 373-382.[http://dx.doi.org/10.1002/mc.20395] [PMID: 17999388]
[45]
Tavora, B.; Batista, S.; Reynolds, L.E.; Jadeja, S.; Robinson, S.; Kostourou, V.; Hart, I.; Fruttiger, M.; Parsons, M.; Hodivala-Dilke, K.M. Endothelial FAK is required for tumour angiogenesis. EMBO Mol. Med., 2010, 2(12), 516-528.[http://dx.doi.org/10.1002/emmm.201000106] [PMID: 21154724]
[46]
Lechertier, T.; Hodivala-Dilke, K. Focal adhesion kinase and tumour angiogenesis. J. Pathol., 2012, 226(2), 404-412.[http://dx.doi.org/10.1002/path.3018] [PMID: 21984450]
[47]
Chen, Q.; Yi, B.; Ma, J.; Ning, J.; Wu, L.; Ma, D.; Lu, K.; Gu, J. α2-adrenoreceptor modulated FAK pathway induced by dexmedetomidine attenuates pulmonary microvascular hyper-permeability following kidney injury. Oncotarget, 2016, 7(35), 55990-56001.[http://dx.doi.org/10.18632/oncotarget.10809] [PMID: 27463003]
[48]
Jean, C.; Chen, X.L.; Nam, J.O.; Tancioni, I.; Uryu, S.; Lawson, C.; Ward, K.K.; Walsh, C.T.; Miller, N.L.; Ghassemian, M.; Turowski, P.; Dejana, E.; Weis, S.; Cheresh, D.A.; Schlaepfer, D.D. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J. Cell Biol., 2014, 204(2), 247-263.[http://dx.doi.org/10.1083/jcb.201307067] [PMID: 24446483]
[49]
Xu, D.; Liu, T.; Lin, L.; Li, S.; Hang, X.; Sun, Y. Exposure to endosulfan increases endothelial permeability by transcellular and paracellular pathways in relation to cardiovascular diseases. Environ. Pollut., 2017, 223, 111-119.[http://dx.doi.org/10.1016/j.envpol.2016.12.051] [PMID: 28108160]
[50]
Hwang, J.S.; Eun, S.Y.; Ham, S.A.; Yoo, T.; Lee, W.J.; Paek, K.S.; Do, J.T.; Lim, D.S.; Seo, H.G. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. Int. J. Biochem. Cell Biol., 2015, 62, 54-61.[http://dx.doi.org/10.1016/j.biocel.2015.02.014] [PMID: 25732738]
[51]
Zheng, Y.; Lu, Z. Paradoxical roles of FAK in tumor cell migration and metastasis. Cell Cycle, 2009, 8(21), 3474-3479.[http://dx.doi.org/10.4161/cc.8.21.9846] [PMID: 19829089]
[52]
Bergmann, S.; Elbahesh, H. Targeting the proviral host kinase, FAK, limits influenza a virus pathogenesis and NFkB-regulated pro-inflammatory responses. Virology, 2019, 534, 54-63.[http://dx.doi.org/10.1016/j.virol.2019.05.020] [PMID: 31176924]
[53]
Mohanty, P.; Bhatnagar, S. In silico screening to identify inhibitors of growth factor receptor 2-focal adhesion kinase interaction for therapeutic treatment of pathological cardiac hypertrophy. Assay Drug Dev. Technol., 2019, 17(2), 58-67.[http://dx.doi.org/10.1089/adt.2018.887] [PMID: 30869527]
[54]
Taneja, N.; Neininger, A.C.; Bersi, M.R.; David, M.W.; Burnette, D.T. Focal adhesion kinase regulates early steps of myofibrillogenesis in cardiomyocytes. Cell Biol. (Henderson NV), 2018, 1-25.[http://dx.doi.org/10.1101/261248]
[55]
Franchi, M.V.; Ruoss, S.; Valdivieso, P.; Mitchell, K.W.; Smith, K.; Atherton, P.J.; Narici, M.V.; Flück, M. Regional regulation of focal adhesion kinase after concentric and eccentric loading is related to remodelling of human skeletal muscle. Acta Physiol. (Oxf.), 2018, 223(3), e13056.[http://dx.doi.org/10.1111/apha.13056] [PMID: 29438584]
[56]
Mohanty, A.; Pharaon, R.R.; Nam, A.; Salgia, S.; Kulkarni, P.; Massarelli, E. FAK-targeted and combination therapies for the treatment of cancer: an overview of phase I and II clinical trials. Expert Opin. Investig. Drugs, 2020, 29(4), 399-409.[http://dx.doi.org/10.1080/13543784.2020.1740680] [PMID: 32178538]
[57]
Cromm, P.M.; Samarasinghe, K.T.G.; Hines, J.; Crews, C.M. Addressing kinase-independent functions of Fak via PROTAC mediated degradation. J. Am. Chem. Soc., 2018, 140(49), 17019-17026.[http://dx.doi.org/10.1021/jacs.8b08008] [PMID: 30444612]
[58]
Gao, H.; Wu, Y.; Sun, Y.; Yang, Y.; Zhou, G.; Rao, Y. Design, synthesis, and evaluation of highly potent Fak-targeting PROTACs. ACS Med. Chem. Lett., 2019, 11(10), 1855-1862.[http://dx.doi.org/10.1021/acsmedchemlett.9b00372] [PMID: 33062164]
[59]
Avraham, H.; Park, S.Y.; Schinkmann, K.; Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell. Signal., 2000, 12(3), 123-133.[http://dx.doi.org/10.1016/S0898-6568(99)00076-5] [PMID: 10704819]
[60]
Lev, S.; Moreno, H.; Martinez, R.; Canoll, P.; Peles, E.; Musacchio, J.M.; Plowman, G.D.; Rudy, B.; Schlessinger, J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature, 1995, 376(6543), 737-745.[http://dx.doi.org/10.1038/376737a0] [PMID: 7544443]
[61]
Duong, L.T.; Rodan, G.A. PYK2 is an adhesion kinase in macrophages, localized in podosomes and activated by beta(2)-integrin ligation. Cell Motil. Cytoskeleton, 2000, 47(3), 174-188.[http://dx.doi.org/10.1002/1097-0169(200011)47:3<174::AID-CM2>3.0.CO;2-N] [PMID: 11056520]
[62]
Klingbeil, C.K.; Hauck, C.R.; Hsia, D.A.; Jones, K.C.; Reider, S.R.; Schlaepfer, D.D. Targeting Pyk2 to β 1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J. Cell Biol., 2001, 152(1), 97-110.[http://dx.doi.org/10.1083/jcb.152.1.97] [PMID: 11149924]
[63]
Shen, T.; Guo, Q. Role of Pyk2 in human cancers. Med. Sci. Monit., 2018, 24, 8172-8182.[http://dx.doi.org/10.12659/MSM.913479] [PMID: 30425234]
[64]
Xing, L.; Rai, B.; Lunney, E.A. Scaffold mining of kinase hinge binders in crystal structure database. J. Comput. Aided Mol. Des., 2014, 28(1), 13-23.[http://dx.doi.org/10.1007/s10822-013-9700-4] [PMID: 24375079]
[65]
Song, Z.; Yang, Y.; Liu, Z.; Peng, X.; Guo, J.; Yang, X.; Wu, K.; Ai, J.; Ding, J.; Geng, M.; Zhang, A. Discovery of novel 2,4-diarylaminopyrimidine analogues (DAAPalogues) showing potent inhibitory activities against both wild-type and mutant ALK kinases. J. Med. Chem., 2015, 58(1), 197-211.[http://dx.doi.org/10.1021/jm5005144] [PMID: 24785465]
[66]
Kath, J.C.; Luzzio, M.J. Pyrimidine derivatives for the treatment of abnormal cell growth their preparation and pharmaceutical compositions. Pfizer Inc. USA. WO2005111016, 2005.
[67]
Kath, J.C.; Luzzio, M.J. Preparation of diamino pyrimidines for the treatment of abnormal cell growth. Pfizer Inc. USA. US 20050256144, 2005.
[68]
Kath, J.C.; Luzzio, M.J. Preparation of pyrimidine derivatives for the treatment of abnormal cell growth USA. Pfizer Inc., US 20050256145, 2005.
[69]
Holmes, I.P.; Bergman, Y.; Lunniss, G.E.; Nikac, M.; Chol, N.; Hemley, C.F.; Walker, S.R.; Foitzik, R.C.; Ganame, D.; Lessene, R. Preparation of N-phenylpyrimidin-2-amines as selective Fak inhibitors. Cancer Ther. CRC US 20130022594, 2013.
[70]
Holmes, I.P.; Bergman, Y.; Lunniss, G.E.; Nikac, M.; Choi, N.; Hemley, C.F.; Walker, S.R.; Foitzik, R.C.; Ganame, D.; Lessene, R. Selective Fak inhibitors. Cancer Ther. CRC US 20130324546, 2015.
[71]
Schlaepfer, D. Method of promoting apoptosis and inhibiting cancer metastasis by administration focal adhesion kinase (FAK) inhibitor. Poniard Pharmac., Inc. USA. WO 2011019943, 2011.
[72]
Cance, W.G.; Pandey, R.K.; Kurenova, E.V.; Ethirajan, M. Kinase protein binding inhibitors. Health Research, Inc. USA. US 20150051245, 2015.
[73]
Cance, W.G.; Pandey, R.K.; Kurenova, E.V.; Ethirajan, M. Preparation of dimethylpyridinylalkyldiamine derivatives and analogs for use as kinase protein binding inhibitors. Roswell Park Cancer Institute, USA. WO 2013074517, 2013.
[74]
Lee, J.; Song, H.J.; Koh, J.S.; Lee, H.K.; Kim, Y.; Chang, S.; Kim, H.W.; Lim, S.H.; Choi, J.S.; Kim, J.H.; Kim, S.W. Preparation of kinase inhibitors for pharmaceutical applications. Genosco, Oscotec Inc., USA. WO 2011060295, 2011.
[75]
Lafrance, L.V.; Leber, J.D.; Li, M.; Verma, S.K. Preparation of benzimidazolecarboxamides as inhibitors of FAK for treatment of proliferative diseases. GlaxoSmithKline LLC, USA. WO 2010126922, 2010.
[76]
Chu, S.S.; Alegria, L.A.; Bender, S.L; Benedict, S. P.; Borchardt, A.J.; Kania, R.S.; Nambu, M.D.; Tempczyk-Russell, A.M.; Sarshar, S. Preparation of diaminothiazoles for inhibiting protein kinases. Agouron Pharmaceuticals, Inc., USA. Patent: WO 2000075120, 2000.
[77]
Van Camp, J.; Patel, J.R.; Swann, S. Preparation of benzodiazepinones as Fak kinase inhibitors for treatment of cancers. Abbott Laboratories, USA. WO 2012045194, 2012.
[78]
Alaoui-Jamali, M.A.; Bijian, K.; Tao, J. Compounds targeting the cell invasion protein complex, their pharmaceutical compositions and methods of use thereof. The Royal Institution for the Advancement of Learning/Mcgill University Can. and Ocean University of China., WO 2013059927, 2013.
[79]
Yin, Y.; Su, Y. Dithiocarbamates compounds serving as fak inhibitors. Beijing Xibo Pharmaceutical Research Co. CN 111072571, 2018.
[80]
Feger, D.; Klotzbuecher, A.; Kubbutat, M.; Horst, G.; Lingnau, A.; Schaechtele, C.; Totzke, F. Use of indolocarbazole imides as selective protein kinase inhibitors for treatment of hematological and solid tumors. KTB Tumorforschungsgesellschaft m.b.H., Germany., WO 2009047216, 2009.
[81]
Breslin, H. J.; Dorsey, B.; Gregory, R. Macrocyclic compounds as ALK, Fak and Jak2 inhibitors and their preparation and use for the treatment of ALK-Fak- and Jak2-mediated diseases. Cephalon, Inc., USA. WO 2012125603, 2012.
[82]
Adams, J.L.; Faitg, T.H.; Johnson, N.W.; Peng, X. Anilinopyridines as inhibitors of Fak. SmithKline Beecham Corporation, USA. WO 2009105498, 2009.
[83]
Harling, J.D.; Tinworth, C. Compounds for treating disorders associated with aberrant kinase activity by degrading said kinase. GlaxoSmithKline, UK. WO 2018033556, 2018.
[84]
Ding, Y.; Fei, Y.; Lu, B. Emerging new concepts of degrader technologies. Trends Pharmacol. Sci., 2020, 41(7), 464-474.[http://dx.doi.org/10.1016/j.tips.2020.04.005] [PMID: 32416934]
[85]
Jones, S.F.; Siu, L.L.; Bendell, J.C.; Cleary, J.M.; Razak, A.R.; Infante, J.R.; Pandya, S.S.; Bedard, P.L.; Pierce, K.J.; Houk, B.; Roberts, W.G.; Shreeve, S.M.; Shapiro, G.I. A phase I study of VS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(5), 1100-1107.[http://dx.doi.org/10.1007/s10637-015-0282-y] [PMID: 26334219]
[86]
Shimizu, T.; Fukuoka, K.; Takeda, M.; Iwasa, T.; Yoshida, T.; Horobin, J.; Keegan, M.; Vaickus, L.; Chavan, A.; Padval, M.; Nakagawa, K. A first-in-Asian phase 1 study to evaluate safety, pharmacokinetics and clinical activity of VS-6063, a focal adhesion kinase (FAK) inhibitor in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2016, 77(5), 997-1003.[http://dx.doi.org/10.1007/s00280-016-3010-1] [PMID: 27025608]
[87]
Su, Y.; Li, R.; Ning, X.; Lin, Z.; Zhao, X.; Zhou, J.; Liu, J.; Jin, Y.; Yin, Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel FAK inhibitors with antitumor and anti-angiogenesis activities. Eur. J. Med. Chem., 2019, 177, 32-46.[http://dx.doi.org/10.1016/j.ejmech.2019.05.048] [PMID: 31129452]
[88]
Luzzio, M. J.; Autry, C. L.; Bhattacharya, S. K.; Freeman-Cook, K.D.; Hayward, M. M.; Hulford, C. A.; Nelson, K. L.; Xiao, J.; Zhao, X. Preparation of sulfonyl amide derivatives for the treatment of abnormal cell growth. Pfizer Products Inc., USA. WO 2008129380, 2008.
[89]
Du, W.; Li, Y. Deuterated Defactinib compound and application. Hinova Pharmaceuticals Inc., Rep. China. WO 2019214587, 2019.
[90]
Roberts, W.G.; Ung, E.; Whalen, P.; Cooper, B.; Hulford, C.; Autry, C.; Richter, D.; Emerson, E.; Lin, J.; Kath, J.; Coleman, K.; Yao, L.; Martinez-Alsina, L.; Lorenzen, M.; Berliner, M.; Luzzio, M.; Patel, N.; Schmitt, E.; LaGreca, S.; Jani, J.; Wessel, M.; Marr, E.; Griffor, M.; Vajdos, F. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res., 2008, 68(6), 1935-1944.[http://dx.doi.org/10.1158/0008-5472.CAN-07-5155] [PMID: 18339875]
[91]
Zhao, X.; Sun, W.; Puszyk, W.M.; Wallet, S.; Hochwald, S.; Robertson, K.; Liu, C. Focal adhesion kinase inhibitor PF573228 and death receptor 5 agonist lexatumumab synergistically induce apoptosis in pancreatic carcinoma. Tumour Biol., 2017, 39(5), 1010428317699120.[http://dx.doi.org/10.1177/1010428317699120] [PMID: 28459212]
[92]
Lederer, P.A.; Zhou, T.; Chen, W.; Epshtein, Y.; Wang, H.; Mathew, B.; Jacobson, J.R. Attenuation of murine acute lung injury by PF-573,228, an inhibitor of focal adhesion kinase. Vascul. Pharmacol., 2018, 110, 16-23.[http://dx.doi.org/10.1016/j.vph.2018.06.017] [PMID: 29969688]
[93]
Howe, G.A.; Xiao, B.; Zhao, H.; Al-Zahrani, K.N.; Hasim, M.S.; Villeneuve, J.; Sekhon, H.S.; Goss, G.D.; Sabourin, L.A.; Dimitroulakos, J.; Addison, C.L. Focal adhesion kinase inhibitors in combination with erlotinib demonstrate enhanced anti-tumor activity in non-small cell lung cancer. PLoS One, 2016, 11(3), e0150567.[http://dx.doi.org/10.1371/journal.pone.0150567] [PMID: 26962872]
[94]
Ott, G.R.; Cheng, M.; Learn, K.S.; Wagner, J.; Gingrich, D.E.; Lisko, J.G.; Curry, M.; Mesaros, E.F.; Ghose, A.K.; Quail, M.R.; Wan, W.; Lu, L.; Dobrzanski, P.; Albom, M.S.; Angeles, T.S.; Wells-Knecht, K.; Huang, Z.; Aimone, L.D.; Bruckheimer, E.; Anderson, N.; Friedman, J.; Fernandez, S.V.; Ator, M.A.; Ruggeri, B.A.; Dorsey, B.D. Discovery of clinical candidate CEP-37440, a selective inhibitor of focal adhesion kinase (Fak) and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2016, 59(16), 7478-7496.[http://dx.doi.org/10.1021/acs.jmedchem.6b00487] [PMID: 27527804]
[95]
Brown, N.F.; Williams, M.; Arkenau, H.T.; Fleming, R.A.; Tolson, J.; Yan, L.; Zhang, J.; Singh, R.; Auger, K.R.; Lenox, L.; Cox, D.; Lewis, Y.; Plisson, C.; Searle, G.; Saleem, A.; Blagden, S.; Mulholland, P. A study of the focal adhesion kinase inhibitor GSK2256098 in patients with recurrent glioblastoma with evaluation of tumor penetration of [11C]GSK2256098. Neuro-oncol., 2018, 20(12), 1634-1642.[http://dx.doi.org/10.1093/neuonc/noy078] [PMID: 29788497]
[96]
Auger, K.R.; Smitheman, K.N.; Korenchuk, S.; McHugh, C.; Kruger, R.; Van Aller, G.S.; Smallwood, A.; Gontarek, R.R.; Faitg, T.; Johnson, N. 387 the focal adhesion kinase inhibitor GSK2256098: a potent and selective inhibitor for the treatment of cancer. Eur. J. Cancer, 2012, 48, 118.[http://dx.doi.org/10.1016/S0959-8049(12)72185-8]
[97]
Mak, G.; Soria, J.C.; Blagden, S.P.; Plummer, R.; Fleming, R.A.; Nebot, N.; Zhang, J.; Mazumdar, J.; Rogan, D.; Gazzah, A.; Rizzuto, I.; Greystoke, A.; Yan, L.; Tolson, J.; Auger, K.R.; Arkenau, H.T. A phase Ib dose-finding, pharmacokinetic study of the focal adhesion kinase inhibitor GSK2256098 and trametinib in patients with advanced solid tumours. Br. J. Cancer, 2019, 120(10), 975-981.[http://dx.doi.org/10.1038/s41416-019-0452-3] [PMID: 30992546]
[98]
Tiede, S.; Meyer-Schaller, N.; Kalathur, R.K.R.; Ivanek, R.; Fagiani, E.; Schmassmann, P.; Stillhard, P.; Häfliger, S.; Kraut, N.; Schweifer, N.; Waizenegger, I.C.; Bill, R.; Christofori, G. The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. Oncogenesis, 2018, 7(9), 73.[http://dx.doi.org/10.1038/s41389-018-0083-1] [PMID: 30237500]
[99]
Verheijen, R.B.; van der Biessen, D.A.J.; Hotte, S.J.; Siu, L.L.; Spreafico, A.; de Jonge, M.J.A.; Pronk, L.C.; De Vos, F.Y.F.L.; Schnell, D.; Hirte, H.W.; Steeghs, N.; Lolkema, M.P. Randomized, open-label, crossover studies evaluating the effect of food and liquid formulation on the pharmacokinetics of the novel focal adhesion kinase (Fak) inhibitor BI 853520. Target. Oncol., 2019, 14(1), 67-74.[http://dx.doi.org/10.1007/s11523-018-00618-0] [PMID: 30742245]
[100]
Hirt, U.A.; Waizenegger, I.C.; Schweifer, N.; Haslinger, C.; Gerlach, D.; Braunger, J.; Weyer-Czernilofsky, U.; Stadtmüller, H.; Sapountzis, I.; Bader, G.; Zoephel, A.; Bister, B.; Baum, A.; Quant, J.; Kraut, N.; Garin-Chesa, P.; Adolf, G.R. Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype. Oncogenesis, 2018, 7(2), 21.[http://dx.doi.org/10.1038/s41389-018-0032-z] [PMID: 29472531]
[101]
Ai, M.; Wang, C.; Tang, Z.; Liu, K.; Sun, X.; Ma, T.; Li, Y.; Ma, X.; Li, L.; Chen, L. Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines. Bioorg. Chem., 2020, 94, 103408.[http://dx.doi.org/10.1016/j.bioorg.2019.103408] [PMID: 31706682]
[102]
Liu, T.J.; LaFortune, T.; Honda, T.; Ohmori, O.; Hatakeyama, S.; Meyer, T.; Jackson, D.; de Groot, J.; Yung, W.K. Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo . Mol. Cancer Ther., 2007, 6(4), 1357-1367.[http://dx.doi.org/10.1158/1535-7163.MCT-06-0476] [PMID: 17431114]
[103]
Kurio, N.; Shimo, T.; Fukazawa, T.; Takaoka, M.; Okui, T.; Hassan, N.M.; Honami, T.; Hatakeyama, S.; Ikeda, M.; Naomoto, Y.; Sasaki, A. Anti-tumor effect in human breast cancer by TAE226, a dual inhibitor for FAK and IGF-IR in vitro and in vivo . Exp. Cell Res., 2011, 317(8), 1134-1146.[http://dx.doi.org/10.1016/j.yexcr.2011.02.008] [PMID: 21338601]
[104]
Lietha, D.; Eck, M.J. Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation. PLoS One, 2008, 3(11), e3800.[http://dx.doi.org/10.1371/journal.pone.0003800] [PMID: 19030106]
[105]
Wu, F.; Xu, T.; He, G.; Ouyang, L.; Han, B.; Peng, C.; Song, X.; Xiang, M. Discovery of novel focal adhesion kinase inhibitors using a hybrid protocol of virtual screening approach based on multicomplex-based pharmacophore and molecular docking. Int. J. Mol. Sci., 2012, 13(12), 15668-15678.[http://dx.doi.org/10.3390/ijms131215668] [PMID: 23443087]
[106]
Moritake, H.; Saito, Y.; Sawa, D.; Sameshima, N.; Yamada, A.; Kinoshita, M.; Kamimura, S.; Konomoto, T.; Nunoi, H. TAE226, a dual inhibitor of focal adhesion kinase and insulin-like growth factor-I receptor, is effective for Ewing sarcoma. Cancer Med., 2019, 8(18), 7809-7821.[http://dx.doi.org/10.1002/cam4.2647] [PMID: 31692287]
[107]
Liu, H.; Wu, B.; Ge, Y.; Huang, J.; Song, S.; Wang, C.; Yao, J.; Liu, K.; Li, Y.; Li, Y.; Ma, X. Phosphamide-containing diphenylpyrimidine analogues (PA-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with enhanced activity against pancreatic cancer cell lines. Bioorg. Med. Chem., 2017, 25(24), 6313-6321.[http://dx.doi.org/10.1016/j.bmc.2017.09.041] [PMID: 29102081]
[108]
Wang, L.; Ai, M.; Yu, J.; Jin, L.; Wang, C.; Liu, Z.; Shu, X.; Tang, Z.; Liu, K.; Luo, H.; Guan, W.; Sun, X.; Ma, X. Structure-based modification of carbonyl-diphenylpyrimidines (Car-DPPYs) as a novel focal adhesion kinase (FAK) inhibitor against various stubborn cancer cells. Eur. J. Med. Chem., 2019, 172, 154-162.[http://dx.doi.org/10.1016/j.ejmech.2019.04.004] [PMID: 30978560]
[109]
Dao, P.; Jarray, R.; Le Coq, J.; Lietha, D.; Loukaci, A.; Lepelletier, Y.; Hadj-Slimane, R.; Garbay, C.; Raynaud, F.; Chen, H. Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity. Bioorg. Med. Chem. Lett., 2013, 23(16), 4552-4556.[http://dx.doi.org/10.1016/j.bmcl.2013.06.038] [PMID: 23845217]
[110]
Dao, P.; Jarray, R.; Smith, N.; Lepelletier, Y.; Le Coq, J.; Lietha, D.; Hadj-Slimane, R.; Herbeuval, J-P.; Garbay, C.; Raynaud, F.; Chen, H. Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities. Cancer Lett., 2014, 348(1-2), 88-99.[http://dx.doi.org/10.1016/j.canlet.2014.03.007] [PMID: 24657306]
[111]
Dao, P.; Lietha, D.; Etheve-Quelquejeu, M.; Garbay, C.; Chen, H. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity. Bioorg. Med. Chem. Lett., 2017, 27(8), 1727-1730.[http://dx.doi.org/10.1016/j.bmcl.2017.02.072] [PMID: 28284808]
[112]
Dao, P.; Smith, N.; Tomkiewicz-Raulet, C.; Yen-Pon, E.; Camacho-Artacho, M.; Lietha, D.; Herbeuval, J.P.; Coumoul, X.; Garbay, C.; Chen, H. Design, synthesis, and evaluation of novel imidazo[1,2-a][1,3,5]triazines and their derivatives as focal adhesion kinase inhibitors with antitumor activity. J. Med. Chem., 2015, 58(1), 237-251.[http://dx.doi.org/10.1021/jm500784e] [PMID: 25180654]
[113]
Choi, H.S.; Wang, Z.; Richmond, W.; He, X.; Yang, K.; Jiang, T.; Sim, T.; Karanewsky, D.; Gu, X-J.; Zhou, V.; Liu, Y.; Ohmori, O.; Caldwell, J.; Gray, N.; He, Y. Design and synthesis of 7H-pyrrolo[2,3-d]pyrimidines as focal adhesion kinase inhibitors. Part 1. Bioorg. Med. Chem. Lett., 2006, 16(8), 2173-2176.[http://dx.doi.org/10.1016/j.bmcl.2006.01.053] [PMID: 16458503]
[114]
Wang, R.; Chen, Y.; Zhao, X.; Yu, S.; Yang, B.; Wu, T.; Guo, J.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis and biological evaluation of novel 7H-pyrrolo[2,3-d]pyrimidine derivatives as potential FAK inhibitors and anticancer agents. Eur. J. Med. Chem., 2019, 183, 111716.[http://dx.doi.org/10.1016/j.ejmech.2019.111716] [PMID: 31550660]
[115]
Wang, R.; Zhao, X.; Yu, S.; Chen, Y.; Cui, H.; Wu, T.; Hao, C.; Zhao, D.; Cheng, M. Discovery of 7H-pyrrolo[2,3-d]pyridine derivatives as potent FAK inhibitors: Design, synthesis, biological evaluation and molecular docking study. Bioorg. Chem., 2020, 102, 104092.[http://dx.doi.org/10.1016/j.bioorg.2020.104092] [PMID: 32707280]
[116]
Wang, R.; Yu, S.; Zhao, X.; Chen, Y.; Yang, B.; Wu, T.; Hao, C.; Zhao, D.; Cheng, M. Design, synthesis, biological evaluation and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors. Eur. J. Med. Chem., 2020, 188, 112024.[http://dx.doi.org/10.1016/j.ejmech.2019.112024] [PMID: 31923858]
[117]
Gütschow, M.; Eynde, J.J.V.; Jampilek, J.; Kang, C.; Mangoni, A.A.; Fossa, P.; Karaman, R.; Trabocchi, A.; Scott, P.J.H.; Reynisson, J.; Rapposelli, S.; Galdiero, S.; Winum, J.Y.; Brullo, C.; Prokai-Tatrai, K.; Sharma, A.K.; Schapira, M.; Azuma, Y.T.; Cerchia, L.; Spetea, M.; Torri, G.; Collina, S.; Geronikaki, A.; García-Sosa, A.T.; Vasconcelos, M.H.; Sousa, M.E.; Kosalec, I.; Tuccinardi, T.; Duarte, I.F.; Salvador, J.A.R.; Bertinaria, M.; Pellecchia, M.; Amato, J.; Rastelli, G.; Gomes, P.A.C.; Guedes, R.C.; Sabatier, J.M.; Estévez-Braun, A.; Pagano, B.; Mangani, S.; Ragno, R.; Kokotos, G.; Brindisi, M.; González, F.V.; Borges, F.; Miloso, M.; Rautio, J.; Muñoz-Torrero, D. Breakthroughs in medicinal chemistry: new targets and mechanisms, new drugs, new hopes-7. Molecules, 2020, 25(13), 2968.[http://dx.doi.org/10.3390/molecules25132968] [PMID: 32605268]
[118]
de Pins, B.; Montalban, E.; Vanhoutte, P.; Giralt, A.; Girault, J.A. The non-receptor tyrosine kinase Pyk2 modulates acute locomotor effects of cocaine in D1 receptor-expressing neurons of the nucleus accumbens. Sci. Rep., 2020, 10(1), 6619.[http://dx.doi.org/10.1038/s41598-020-63426-5] [PMID: 32313025]
[119]
Azizi, R.; Fallahian, F.; Aghaei, M.; Salemi, Z. Down-regulation of DDR1 induces apoptosis and inhibits EMT through phosphorylation of Pyk2/MKK7 in DU-145 and Lncap-FGC prostate cancer cell lines. Anticancer. Agents Med. Chem., 2020, 20(8), 1009-1016.[http://dx.doi.org/10.2174/1871520620666200410075558] [PMID: 32275493]
[120]
Chaudhary, P.K.; Han, J.S.; Jee, Y.; Lee, S.H.; Kim, S. Pyk2 downstream of G12/13 pathways regulates platelet shape change through RhoA/p160ROCK. Biochem. Biophys. Res. Commun., 2020, 526(3), 738-743.[http://dx.doi.org/10.1016/j.bbrc.2020.03.130] [PMID: 32265034]
[121]
Xiang, H.; Zhang, J.; Lin, C.; Zhang, L.; Liu, B.; Ouyang, L.; Ouyang, L. Targeting autophagy-related protein kinases for potential therapeutic purpose. Acta Pharm. Sin. B, 2020, 10(4), 569-581.[http://dx.doi.org/10.1016/j.apsb.2019.10.003] [PMID: 32322463]
[122]
Dawson, J.C.; Serrels, B.; Byron, A.; Muir, M.T.; Makda, A.; García-Muñoz, A.; von Kriegsheim, A.; Lietha, D.; Carragher, N.O.; Frame, M.C. A synergistic anticancer Fak and HDAC inhibitor combination discovered by a novel chemical-genetic high-content phenotypic screen. Mol. Cancer Ther., 2020, 19(2), 637-649.[http://dx.doi.org/10.1158/1535-7163.MCT-19-0330] [PMID: 31784455]
[123]
Hou, J.; Tan, Y.; Su, C.; Wang, T.; Gao, Z.; Song, D.; Zhao, J.; Liao, Y.; Liu, X.; Jiang, Y.; Feng, Q.; Wan, Z.; Yu, Y. Inhibition of protein FAK enhances 5-FU chemosensitivity to gastric carcinoma via p53 signaling pathways. Comput. Struct. Biotechnol. J., 2019, 18, 125-136.[http://dx.doi.org/10.1016/j.csbj.2019.12.010] [PMID: 31969973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy