Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Green Efficient Synthesis of Oxadiazole Derivatives as Analgesic and Antiinflammatory Agents

Author(s): Biswa M. Sahoo*, Bera Venkata V. Ravi Kumar, Bimal K. Banik and Preetismita Borah

Volume 7, Issue 2, 2020

Page: [163 - 178] Pages: 16

DOI: 10.2174/2213346107999200427080057

Price: $65

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) act as a major class of therapeutic agents. The biological activity of NSAIDs is due to the suppression of prostaglandin biosynthesis by inhibiting cyclooxygenase (COX) enzyme. COX is an endogenous enzyme, which catalyzes the conversion of arachidonic acid into prostaglandins. But the significant side effect by NSAIDs is the formation of gastric ulcers, irritation and GI bleeding. Therefore, alternative drugs that can overcome these limitations are necessary. Towards the goal, oxadiazole derivatives are designed and synthesized following a green chemistry approach. This method helps to reduce environmental pollution and the formation of by-products so that the yield of products is increased in less reaction time. It is observed that the anti- inflammatory activity of oxadiazoles is based on dual mechanisms, such as the inhibition of both COX and LOX (lipoxygenase) enzyme thereby reducing gastric ulceration. On this basis, research is carried out to develop efficient anti-inflammatory agents with minimal side effects by incorporating the oxadiazole moiety.

Keywords: Green synthesis, oxadiazole, analgesic, anti-inflammatory, cyclooxygenase, NSAIDs.

Graphical Abstract
[1]
Clark, J.H. Green chemistry: Challenges and opportunities. Green Chem., 1999, 1, 1-8.
[http://dx.doi.org/10.1039/a807961g]
[2]
Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, J.J.; Vaquero, J. Green chemistry in organic synthesis. Mini Rev. Org. Chem., 2010, 7(1), 44-53.
[3]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[4]
Li, C.J. Reactions in water. Handbook of green chemistry, Wiley-VCH Verlag; Anastas, P.T., Ed.; , 2010, p. 5.
[5]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[6]
Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem., 2005, 7, 267-278.
[http://dx.doi.org/10.1039/b418069k]
[7]
Bhandari, M.; Raj, S. Practical approach to green chemistry. Int. J. Pharm. Pharm. Sci., 2017, 9(4), 11-26.
[http://dx.doi.org/10.22159/ijpps.2017v9i4.15640]
[8]
Mahato, A.K.; Sahoo, B.M.; Banik, B.K.; Mohanta, B.C. Microwave-assisted synthesis: Paradigm of Green Chemistry. J. Indian Chem. Soc., 2018, 95(11), 1327-1339.
[9]
Marvaniya, H.M.; Modi, K.N.; Sen, D.J. Greener reactions under solvent free conditions. Int. J. Drug Dev. Res., 2011, 3(2), 34-43.
[10]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[11]
Li, J.; Wang, S.; Chen, G.; Li, T. Some applications of ultrasound irradiation in organic synthesis. Curr. Org. Synth., 2005, 2(3), 415-436.
[http://dx.doi.org/10.2174/1570179054368509]
[12]
Michelin, C.; Hoffmann, N. Photocatalysis applied to organic synthesis–A green chemistry approach. Curr. Opin. Green Sust. Chem., 2018, 10, 40-45.
[13]
Chauhan, P.; Chimni, S.S. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein J. Org. Chem., 2012, 8, 2132-2141.
[http://dx.doi.org/10.3762/bjoc.8.240] [PMID: 23243475]
[14]
Stolle, A.; Szuppa, T.; Leonhardt, S.E.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev., 2011, 40(5), 2317-2329.
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034]
[15]
Jessop, P.G. Searching for green solvents. Green Chem., 2011, 13, 1391-1398.
[http://dx.doi.org/10.1039/c0gc00797h]
[16]
Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H. Green solvents in organic synthesis: An Overview. Curr. Org. Chem., 2013, 17(11), 1179-1187.
[http://dx.doi.org/10.2174/1385272811317110005]
[17]
Prat, D.; Hayler, J.; Wells, A. A survey of solvent selection guides. Green Chem., 2014, 16, 4546-4551.
[http://dx.doi.org/10.1039/C4GC01149J]
[18]
Trost, B.M. The atom economy-a search for synthetic efficiency. Science, 1991, 254(5037), 1471-1477.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
[19]
Trost, B.M. Atom economy-A challenge for organic synthesis: Homogeneous catalysis leads the way. Angew. Chem. Int. Ed. Engl., 1995, 34, 259-281.
[http://dx.doi.org/10.1002/anie.199502591]
[20]
Somani, R.R.; Shirodkar, P.Y. Oxadiazole: A biologically important heterocycle. Pharma Chem., 2009, 1, 130-140.
[21]
Verma, G.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Akhter, M.; Shaquiquzzaman, M. A review exploring therapeutic worth of 1,3,4-oxadiazole tailored compounds. Mini Rev. Med. Chem., 2019, 19(6), 477-509.
[http://dx.doi.org/10.2174/1389557518666181015152433] [PMID: 30324877]
[22]
Bala, S.; Kamboj, S.; Kumar, A. Heterocyclic 1,3,4-oxadiazole compounds with diverse biological activities: A comprehensive review. J. Pharm. Res., 2010, 3(12), 2993-2997.
[23]
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[24]
Singh, A.K.; Sahu, V.K.; Yadav, D. Biological activities of 2,5-disubstituted-1,3,4-oxadiazoles. Int. J. Pharm. Sci. Res., 2011, 2(6), 135-147.
[25]
Chawla, G. 1,2,4-Oxadiazole as a privileged scaffold for anti-inflammatory and analgesic activities: A review. Mini Rev. Med. Chem., 2018, 18(18), 1536-1547.
[http://dx.doi.org/10.2174/1389557518666180524112050] [PMID: 29792145]
[26]
Sharma, S.; Sharma, P.K.; Kumar, N.; Dudhe, R.A. Review: oxadiazole their chemistry and pharmacological potentials. Pharma Chem., 2010, 2(4), 253-263.
[27]
Nagaraj, C.K.C.; Niranjan, M.S.; Kiran, S. 1,3,4-oxadiazole: A potent drug candidate with various pharmacological activities. Int. J. Pharm. Pharm. Sci., 2011, 3(3), 916.
[28]
Ainsworth, C.; Hackler, R.E. Alkyl-1,3,4-oxadiazoles. J. Org. Chem., 1966, 31(10), 3442-3444.
[http://dx.doi.org/10.1021/jo01348a531]
[29]
Kumar, K.A.; Jayaroopa, P.; Kumar, G.V. Comprehensive review on the chemistry of 1,3,4-oxadiazoles and their applications. Int. J. Chemtech Res., 2012, 4(4), 1782-1791.
[30]
Singh, R.; Chouhan, A. Various approaches for synthesis of 1,3,4-Oxadiazole derivatives and their pharmacological activity. World J. Pharm. Pharm. Sci., 2014, 3(10), 1474-1505.
[31]
Husain, A.; Ajmal, M. Synthesis of novel 1,3,4-oxadiazole derivatives and their biological properties. Acta Pharm., 2009, 59(2), 223-233.
[http://dx.doi.org/10.2478/v10007-009-0011-1] [PMID: 19564146]
[32]
Bhardwaj, N.; Saraf, S.K.; Sharma, P.; Kumar, P. Synthesis of 1,3,4-Oxadiazoles for their antimicrobial activity. E-J. Chem., 2009, 6(4), 1133-1138.
[http://dx.doi.org/10.1155/2009/698023]
[33]
Bhandari, S.V.; Parikh, J.K.; Bothara, K.G.; Chitre, T.S.; Lokwani, D.K.; Devale, T.L.; Modhave, N.S.; Pawar, V.S.; Panda, S. Design, synthesis, and evaluation of anti-inflammatory, analgesic, ulcerogenicity, and nitric oxide releasing studies of novel indomethacin analogs as non-ulcerogenic derivatives. J. Enzyme Inhib. Med. Chem., 2010, 25(4), 520-530.
[http://dx.doi.org/10.3109/14756360903357585] [PMID: 20109034]
[34]
Sahoo, B.M.; Dinda, S.C.; Ravi Kumar, B.V.V.; Panda, J.; Brahmkshatriya, P.S. Design, green synthesis, and anti-inflammatory activity of Schiff base of 1,3,4-oxadiazole Analogues. Lett. Drug Des. Discov., 2014, 11, 82-89.
[http://dx.doi.org/10.2174/15701808113109990041]
[35]
Bhansali, S.G.; Kulkarni, V.M. Design, synthesis, docking, QSAR, ADME studies and pharmacological evaluation of biphenyl-2-oxadiazoles as anti-inflammatory agents. Pharma Chem., 2015, 7(1), 156-173.
[36]
Dar, B.A.; Zaheer, Z.; Fatema, S.; Jadav, S.; Farooqui, M. KF-Al2O3 Catalyzed domino one-pot, three-component synthesis of 3,5-disubstituted-1,2,4-Oxadiazoles Under microwave assisted solvent free conditions and their biological activity. Int. J. of Pharm. Res. & Allied Sci., 2015, 4(3), 93-99.
[37]
Wagle, S.; Adhikari, A.V.; Kumari, S. Synthesis of some new 2-(3- methyl-7-substituted-2-oxoquinoxalinyl)-5-(aryl)-1,3,4-oxadiazoles as potential non-steroidal anti-inflammatory and analgesic agents. Ind. J. of Chem., Section B,; 2008.47(3), 439-448.
[38]
Husain, A.; Sarafroz, M.; Ahuja, P. 2-[3-(4-chloro/ethyl phenyl)propan-3-one]-5-(substituted phenyl)-1,3,4-oxadiazoles: synthesis and biological evaluation. Acta Pol. Pharm., 2008, 65(5), 527-534.
[PMID: 19051598]
[39]
Kataria, A.K.; Khan, S.A.; Alam, M.M.; Husain, A.; Akhtar, M.; Khanna, S.; Haider, R.; Shaquiquzzaman, M. Synthesis of some new 2-(substituted-phenyl)-5-(N,N-diphenylaminomethyl)-1,3,4-oxadiazoles: A safer anti-inflammatory and analgesic agents. Acta Pol. Pharm., 2011, 68(3), 381-386.
[PMID: 21648192]
[40]
Satyanarayana, D.; Reddy, P.K.P.; Ramana, M.V.; Kalluraya, B. Synthesis and biological activity of 2(4)-pyridyl-4-arylaminomethyl-1,3,4-oxadiazolin-5-thiones. Ind. J. Het. Chem., 2000, 10(1), 45-48.
[41]
Dewangan, D.; Nakhate, K.T.; Tripathi, D.K.; Kashyap, P.; Dhongde, H. Synthesis, Characterization and screening for analgesic and anti-inflammatory activities of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives. Antiinflamm. Antiallergy Agents Med. Chem., 2015, 14(2), 138-145.
[http://dx.doi.org/10.2174/1871523014666150820100212] [PMID: 26290079]
[42]
Shah, S.; Arshia, K.; Kazmi, N.S.; Jabeen, A.; Faheem, A.; Dastagir, N.; Ahmed, T.; Khan, K.M.; Ahmed, S.; Raza, A.; Perveen, S. diclofenac 1,3,4-oxadiazole derivatives; biology-oriented drug synthesis (BIODS) in Search of Better Non-Steroidal, Non-Acid Antiinflammatory agents. Med. Chem., 2018, 14(7), 674-687.
[http://dx.doi.org/10.2174/1573406414666180321141555] [PMID: 29564980]
[43]
Somani, R.R.; Bhanushali, U.V. Synthesis and evaluation of antiinflammatory, analgesic and ulcerogenic potential of NSAIDs bearing 1,3,4-oxadiazole scaffold. Indian J. Pharm. Sci., 2011, 73(6), 634-640.
[http://dx.doi.org/10.4103/0250-474X.100237] [PMID: 23112397]
[44]
Chawla, G.; Naaz, B.; Siddiqui, A.A. Exploring 1,3,4-oxadiazole Scaffold for anti-inflammatory and analgesic activities: A review of literature from 2005-2016. Mini Rev. Med. Chem., 2018, 18(3), 216-233.
[http://dx.doi.org/10.2174/1389557517666170127121215] [PMID: 28137242]
[45]
Abd el-Samii, Z.K. Synthesis and anti-inflammatory activity of some novel 1,3,4-oxadiazole derivatives. J. Chem. Technol. Biotechnol., 1992, 53(2), 143-146.
[http://dx.doi.org/10.1002/jctb.280530206] [PMID: 1368010]
[46]
Frank, P.V.; Girish, K.S.; Kalluraya, B. Solvent-free microwave-assisted synthesis of oxadiazoles containing imidazole moiety. J. Chem. Sci., 2007, 119(1), 41-46.
[http://dx.doi.org/10.1007/s12039-007-0007-7]
[47]
Bhardwaj, S.; Parashar, B.; Parashar, N.; Sharma, V.K. Microwave assisted synthesis and pharmacological evaluation of some 1,3,4-oxadiazole derivatives. Arch. Appl. Sci. Res., 2011, 3(2), 558-567.
[48]
Bharatiy, N.; Gharu, C.P. Green and efficient microwave one-pot synthetic approach to 2-N-Methyl-piperazino-5-mercapto-substituted aryl-1,3,4-oxadiazole derivatives and evaluation of their in-vitro antioxidant and anti-inflammatory activity. Chem. Sci. Trans., 2015, 4(1), 121-126.
[49]
Biju, C.; Ilango, K.; Prathap, M.; Rekha, K. Design and microwave-assisted synthesis of 1,3,4-oxadiazole derivatives for analgesic and anti-inflammatory activity. J. Young Pharm., 2012, 4(1), 33-37.
[http://dx.doi.org/10.4103/0975-1483.93576] [PMID: 22523458]
[50]
Redhu, S.; Khar, R. Recent updates on chemistry and pharmacological aspects of 1,3,4-oxadiazole scaffold. Int. J. Pharm. Innov., 2013, 3(1), 93-110.
[51]
Khan, M.S.; Anther, M. Microwave assisted synthesis of 2,5-disubstituted-1,3,4-oxadiazole derivatives. Indian J. Chem., 2003, 42B, 900-904.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy