Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Combined Effect of Vaccinium nilgiriensis Bark Extract and 680nm Laser Irradiation in Inducing Breast Cancer Cell Death

Author(s): Blassan P. George*, Rahul Chandran, Suman Thamburaj and Thangaraj Parimelazhagan

Volume 21, Issue 2, 2021

Published on: 09 April, 2020

Page: [207 - 213] Pages: 7

DOI: 10.2174/1871520620666200410082302

Price: $65

Abstract

Background: Cancer refers to a collection of diseases where cells begin to multiply uncontrollably. Breast cancer is the most predominant malignancy in women. Herbal medicine is one of the important health care systems in most developing countries. Many studies have shown that naturally occurring compounds may support the prevention and treatment of various diseases, including cancer. Some of the plant extracts and isolated compounds show photosensitizing activities and reduce cell proliferation whereas some have revealed photoprotective effects.

Objectives: The biological properties and medicinal uses of extracts and bioactive compounds from V. nilgiriensis have not been investigated. This study aims to evaluate the cytotoxic effects of V. nilgiriensis in combination with 680nm laser irradiation on MCF-7 breast cancer cells.

Methods: The inverted microscopy, ATP and LDH assay were used to analyze the cellular morphology, proliferation, cytotoxicity respectively after the treatment with V. nilgiriensis bark extract. The diode laser of wavelength 680nm and 15 J/cm2 fluency has been used for laser irradiation. The activity of apoptotic proteins was studied using ELISA and nuclear damage by Hoechst staining.

Results: The exposure of V. nilgiriensis extracts with laser irradiation at 680nm increases the cytotoxicity and decreases the proliferation of MCF-7 cells. The results of the Hoechst stain indicated nuclear damage. Our study proved that V. nilgiriensis holds a strong cytotoxic effect on breast cancer cells alone and in combination with laser irradiation by upregulating the expression of apoptotic proteins such as caspase 3, p53 and Bax.

Conclusion: The results from this study showed that the bark ethyl acetate of V. nilgiriensis and in combination with laser is effective in preventing breast cancer cell proliferation in vitro. Further work is warranted to isolate the bioactive compounds from V. nilgiriensis bark extract and study the effect of compounds in the cell death induction. Due to the cytotoxic properties, V. nilgiriensis can be considered as a potent therapeutic agent for the treatment of cancer.

Keywords: Vaccinium, breast cancer, phototoxicity, cytotoxicity, proliferation, nuclear damage.

Graphical Abstract
[1]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Lab. Med., 2017, 1, 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[2]
Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci., 2015, 6, 799.
[http://dx.doi.org/10.3389/fpls.2015.00799] [PMID: 26483815]
[3]
Karikas, G.A. Anticancer and chemopreventing natural products: Some biochemical and therapeutic aspects. J. BUON, 2010, 15(4), 627-638.
[PMID: 21229622]
[4]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8S)(Suppl.), 2073S-2085S.
[http://dx.doi.org/10.1093/jn/130.8.2073S] [PMID: 10917926]
[5]
Hashemzaei, M.; Karami, S.P.; Delaramifar, A.; Sheidary, A.; Tabrizian, K.; Rezaee, R.; Shahsavand, S.; Arsene, A.L.; Tsatsakis, A.M.; Mohammad, S. Anticancer effects of co-administration of daunorubicin and resveratrol in MOLT-4, U266 B1 and RAJI cell lines. Farmacia, 2016, 64, 36-42.
[6]
Ramkissoon, J.S.; Mahomoodally, M.F.; Ahmed, N.; Subratty, A.H. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac. J. Trop. Med., 2013, 6(7), 561-569.
[http://dx.doi.org/10.1016/S1995-7645(13)60097-8] [PMID: 23768830]
[7]
Tabrizian, K.; Yaghoobi, N.S.; Iranshahi, M.; Shahraki, J.; Rezaee, R.; Hashemzaei, M. Auraptene consolidates memory, reverses scopolamine-disrupted memory in passive avoidance task, and ameliorates retention deficits in mice. Iran. J. Basic Med. Sci., 2015, 18(10), 1014-1019.
[PMID: 26730337]
[8]
van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers (Basel), 2017, 9(2)E19
[http://dx.doi.org/10.3390/cancers9020019]] [PMID: 28218708]
[9]
Tanaka, M.; Kataoka, H.; Mabuchi, M.; Sakuma, S.; Takahashi, S.; Tujii, R.; Akashi, H.; Ohi, H.; Yano, S.; Morita, A.; Joh, T. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res., 2011, 31(3), 763-769.
[PMID: 21498693]
[10]
Chaves, Y.N.; Torezan, L.A.; Niwa, A.B.; Sanches, Junior, J.A.; Festa Neto, C. Pain in photodynamic therapy: Mechanism of action and management strategies. An. Bras. Dermatol., 2012, 87(4), 521-526.
[http://dx.doi.org/10.1590/S0365-05962012000400001]] [PMID: 22892763]
[11]
Juarranz, A.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol., 2008, 10(3), 148-154.
[http://dx.doi.org/10.1007/s12094-008-0172-2] [PMID: 18321817]
[12]
Martz, F.; Jaakola, L.; Julkunen-Tiitto, R.; Stark, S. Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in Northern Europe following foliar development and along environmental gradients. J. Chem. Ecol., 2010, 36(9), 1017-1028.
[http://dx.doi.org/10.1007/s10886-010-9836-9] [PMID: 20721607]
[13]
Mykkänen, O.T.; Huotari, A.; Herzig, K.H.; Dunlop, T.W.; Mykkänen, H.; Kirjavainen, P.V. Wild blueberries (Vaccinium myrtillus) alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet. PLoS One, 2014, 9(12)e114790
[http://dx.doi.org/10.1371/journal.pone.0114790]] [PMID: 25501421]
[14]
Erlund, I.; Koli, R.; Alfthan, G.; Marniemi, J.; Puukka, P.; Mustonen, P.; Mattila, P.; Jula, A. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am. J. Clin. Nutr., 2008, 87(2), 323-331.
[http://dx.doi.org/10.1093/ajcn/87.2.323] [PMID: 18258621]
[15]
Rouanet, J.M.; Decorde, K.; Del Rio, D.; Auger, C.; Borges, G.; Cristol, J.P. Berry juices, teas, antioxidants and the prevention of atherosclerosis in hamsters. Food Chem., 2010, 118(2), 266-271.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.116]
[16]
Taherpour, A.; Noorabadi, P.; Abedi, F.; Taherpour, A.A. Effect of aqueous cranberry (Vaccinium arctostaphylos L.) extract accompanied with antibiotics on urinary tract infections caused by Escherichia coli in vitro. J. Pure Appl. Microbiol., 2008, 2, 135-138.
[17]
Vucic, D.M.; Petkovic, M.R.; Rodic-Grabovac, B.B.; Stefanovic, O.D.; Vasic, S.M.; Comic, L.R. Antibacterial and antioxidant activities of bilberry (Vaccinium myrtillus L.) in vitro. African J. Morus alba Micro. Res., 2013, 7(45), 5130-5136.
[18]
Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry supplementation improves memory in older adults. J. Agric. Food Chem., 2010, 58(7), 3996-4000.
[http://dx.doi.org/10.1021/jf9029332] [PMID: 20047325]
[19]
Liu, Y.; Song, X.; Han, Y.; Zhou, F.; Zhang, D.; Ji, B.; Hu, J.; Lv, Y.; Cai, S.; Wei, Y.; Gao, F.; Jia, X. Identification of anthocyanin components of wild Chinese blueberries and amelioration of light-induced retinal damage in pigmented rabbit using whole berries. J. Agric. Food Chem., 2011, 59(1), 356-363.
[http://dx.doi.org/10.1021/jf103852s] [PMID: 21142104]
[20]
Prabhu Kumar, K.M.; Sreeraj, V.; Binu, T.; Manudev, K.M.; Rajendran, A. Validation and documentation of Rare Endemic and Threatened (RET) plants from Nilgiri, Kanuvai and Madukkarai forests of southern Western Ghats, India. J. Threat. Taxa, 2012, 4(15), 3436-3442.
[http://dx.doi.org/10.11609/JoTT.o3145.3436-42]
[21]
Ramachandran, V.S.; Udhayavani, C. Knowledge and use of wild edible plants by paniyas and kurumbas of Western Nilgiris, Tamil Nadu, India. J. Nat. Prod. Res., 2013, 4(4), 412-418.
[22]
Plackal Adimuriyil George, B.; Kumar, N.; Abrahamse, H.; Ray, S.S. Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci. Rep., 2018, 8(1), 14368.
[http://dx.doi.org/10.1038/s41598-018-32480-5] [PMID: 30254325]
[23]
George, B.P.; Abrahamse, H.; Hemmaragala, N.M. Anticancer effects elicited by combination of Rubus extract with phthalocyanine photosensitiser on MCF-7 human breast cancer cells. Photodiagn. Photodyn. Ther., 2017, 19, 266-273.
[http://dx.doi.org/10.1016/j.pdpdt.2017.06.014] [PMID: 28662924]
[24]
George, B.P.; Abrahamse, H. Increased oxidative stress induced by Rubus bioactive compounds induce apoptotic cell death in human breast cancer cells. Oxid. Med. Cell. Longev., 2019, 2019, Article ID 6797921
[25]
Méry, B.; Guy, J.B.; Vallard, A.; Espenel, S.; Ardail, D.; Rodriguez-Lafrasse, C.; Rancoule, C.; Magné, N. In vitro cell death determination for drug discovery: A landscape review of real issues. J. Cell Death, 2017, 101179670717691251
[http://dx.doi.org/10.1177/1179670717691251]] [PMID: 28469473]
[26]
Saraste, A.; Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res., 2000, 45(3), 528-537.
[http://dx.doi.org/10.1016/S0008-6363(99)00384-3] [PMID: 10728374]
[27]
Riss, T.L.; Moravec, R.A. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev. Technol., 2004, 2(1), 51-62.
[http://dx.doi.org/10.1089/154065804322966315] [PMID: 15090210]
[28]
Severson, W.E.; Shindo, N.; Sosa, M.; Fletcher, T., III; White, E.L.; Ananthan, S.; Jonsson, C.B. Development and validation of a high-throughput screen for inhibitors of SARS CoV and its application in screening of a 100,000-compound library. J. Biomol. Screen., 2007, 12(1), 33-40.
[http://dx.doi.org/10.1177/1087057106296688] [PMID: 17200104]
[29]
Speidel, D. Transcription-independent p53 apoptosis: An alternative route to death. Trends Cell Biol., 2010, 20(1), 14-24.
[http://dx.doi.org/10.1016/j.tcb.2009.10.002] [PMID: 19879762]
[30]
Schuler, M.; Bossy-Wetzel, E.; Goldstein, J.C.; Fitzgerald, P.; Green, D.R. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem., 2000, 275(10), 7337-7342.
[http://dx.doi.org/10.1074/jbc.275.10.7337] [PMID: 10702305]
[31]
Zheng, J.H.; Viacava Follis, A.; Kriwacki, R.W.; Moldoveanu, T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J., 2016, 283(14), 2690-2700.
[http://dx.doi.org/10.1111/febs.13527] [PMID: 26411300]
[32]
Lee, M.G.; Lee, K.T.; Chi, S.G.; Park, J.H. Costunolide induces apoptosis by ROS-mediated mitochondrial permeability transition and cytochrome C release. Biol. Pharm. Bull., 2001, 24(3), 303-306.
[http://dx.doi.org/10.1248/bpb.24.303] [PMID: 11256490]
[33]
Rasul, A.; Bao, R.; Malhi, M.; Zhao, B.; Tsuji, I.; Li, J.; Li, X. Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molecules, 2013, 18(2), 1418-1433.
[http://dx.doi.org/10.3390/molecules18021418] [PMID: 23348995]
[34]
Das Gupta, S.; Suh, N. Tocopherols in cancer: An update. Mol. Nutr. Food Res., 2016, 60(6), 1354-1363.
[http://dx.doi.org/10.1002/mnfr.201500847] [PMID: 26751721]
[35]
Xiao, J.B.; Chen, X.Q.; Zhang, Y.W.; Jiang, X.Y.; Xu, M. Cytotoxicity of Marchantia convoluta leaf extracts to human liver and lung cancer cells. Braz. J. Med. Biol. Res., 2006, 39(6), 731-738.
[http://dx.doi.org/10.1590/S0100-879X2006000600005] [PMID: 16751978]
[36]
Boni, C.; Pagano, M.; Panebianco, M.; Bologna, A.; Sierra, N.M.; Gnoni, R.; Formisano, D.; Bisagni, G. Therapeutic activity of testosterone in metastatic breast cancer. Anticancer Res., 2014, 34(3), 1287-1290.
[PMID: 24596374]
[37]
Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem., 2003, 51(1), 68-75.
[http://dx.doi.org/10.1021/jf025781x] [PMID: 12502387]
[38]
Tsuda, H.; Kunitake, H.; Kawasaki-Takaki, R.; Nishiyama, K.; Yamasaki, M.; Komatsu, H.; Yukizaki, C. Antioxidant activities and anti-cancer cell proliferation properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and Blueberry cultivars. Plants (Basel), 2013, 2(1), 57-71.
[http://dx.doi.org/10.3390/plants2010057] [PMID: 27137366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy