Mini-Review Article

重新使用降压药治疗阿尔茨海默氏病

卷 28, 期 9, 2021

发表于: 12 March, 2020

页: [1716 - 1730] 页: 15

弟呕挨: 10.2174/0929867327666200312114223

价格: $65

摘要

阿尔茨海默氏病(AD)是一种神经退行性疾病,已经影响了全球数百万人。 但是,目前尚无治愈该病的治疗方法。 市场上可买到的AD药物只能通过症状来控制疾病,而且这种作用通常是短期的。 因此,需要研究替代性AD疗法。 这篇文献综述旨在阐明重新应用降压药治疗AD的潜力。 中年高血压不仅被认为是AD的危险因素,而且与AD的关系也得到了很好的确立。 因此,假定降压药在管理AD方面是有益的。 在这篇综述中讨论了四类降压药,以及它们作为AD治疗药的潜在局限性和前景。

关键词: 药物再利用,阿尔茨海默氏病,抗高血压药,钙通道阻滞剂,ACEI抑制剂,AT2抑制剂,β受体阻滞剂。

[1]
McGleenon, B.M.; Dynan, K.B.; Passmore, A.P. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br. J. Clin. Pharmacol., 1999, 48(4), 471-480.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00026.x] [PMID: 10583015]
[2]
Corbett, A.; Pickett, J.; Burns, A.; Corcoran, J.; Dunnett, S.B.; Edison, P.; Hagan, J.J.; Holmes, C.; Jones, E.; Katona, C.; Kearns, I.; Kehoe, P.; Mudher, A.; Passmore, A.; Shepherd, N.; Walsh, F.; Ballard, C. Drug repositioning for Alzheimer’s disease. Nat. Rev. Drug Discov., 2012, 11(11), 833-846.
[http://dx.doi.org/10.1038/nrd3869] [PMID: 23123941]
[3]
Chiu, M.J.; Chen, T.F.; Yip, P.K.; Hua, M.S.; Tang, L.Y. Behavioral and psychologic symptoms in different types of dementia. J. Formos. Med. Assoc., 2006, 105(7), 556-562.
[http://dx.doi.org/10.1016/S0929-6646(09)60150-9] [PMID: 16877235]
[4]
Shoaib, M.; Kamal, M.A.; Rizvi, S.M.D. Repurposed drugs as potential therapeutic candidates for the management of Alzheimer’s disease. Curr. Drug Metab., 2017, 18(9), 842-852.
[http://dx.doi.org/10.2174/1389200218666170607101622] [PMID: 28595531]
[5]
Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J. Alzheimers Dis., 2019, 67(3), 779-794.
[http://dx.doi.org/10.3233/JAD-180766] [PMID: 30689575]
[6]
Corbett, A.; Williams, G.; Ballard, C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. Pharmaceuticals (Basel), 2013, 6(10), 1304-1321.
[http://dx.doi.org/10.3390/ph6101304] [PMID: 24275851]
[7]
Robinson, D.M.; Keating, G.M.R. Memantine: a review of its use in Alzheimer’s disease. Drugs, 2006, 66(11), 1515-1534.
[http://dx.doi.org/10.2165/00003495-200666110-00015] [PMID: 16906789]
[8]
Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf., 2014, 13(6), 759-774.
[http://dx.doi.org/10.1517/14740338.2014.914168] [PMID: 24845946]
[9]
Imbimbo, B.P.; Watling, M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2019, 28(11), 967-975.
[http://dx.doi.org/10.1080/13543784.2019.1683160] [PMID: 31661331]
[10]
Yang, T.; Dang, Y.; Ostaszewski, B.; Mengel, D.; Steffen, V.; Rabe, C.; Bittner, T.; Walsh, D.M.; Selkoe, D.J. Target engagement in an alzheimer trial: crenezumab lowers amyloid β oligomers in cerebrospinal fluid. Ann. Neurol., 2019, 86(2), 215-224.
[http://dx.doi.org/10.1002/ana.25513] [PMID: 31168802]
[11]
Bu, X.L.; Jiao, S.S.; Lian, Y.; Wang, Y.J. Perspectives on the tertiary prevention strategy for Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(3), 307-316.
[http://dx.doi.org/10.2174/1567205013666151215110114] [PMID: 26667888]
[12]
Doan, T.L.; Pollastri, M.; Walters, M.A.; Georg, G.I. The future of drug repositioning: old drugs, new opportunities. Annu. Rep. Med. Chem., 2011, 46, 385-401.
[http://dx.doi.org/10.1016/B978-0-12-386009-5.00004-7]
[13]
Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci., 2018, 14(10), 1232-1244.
[http://dx.doi.org/10.7150/ijbs.24612] [PMID: 30123072]
[14]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/10.3332/ecancer.2014.442] [PMID: 25075216]
[15]
Talevi, A. Drug repositioning: current approaches and their implications in the precision medicine era. Expert Rev. Precis. Med. Drug Dev., 2018, 3(1), 49-61.
[http://dx.doi.org/10.1080/23808993.2018.1424535]
[16]
Polamreddy, P.; Gattu, N. The drug repurposing landscape from 2012 to 2017: evolution, challenges and possible solutions. Drug Discov. Today, 2019, 24(3), 789-795.
[http://dx.doi.org/10.1016/j.drudis.2018.11.022] [PMID: 30513339]
[17]
Alexander, R.W. Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the medication of arterial inflammatory response: a new perspective. Hypertension, 1995, 25(2), 155-161.
[http://dx.doi.org/10.1161/01.HYP.25.2.155] [PMID: 7843763]
[18]
Shih, Y.H.; Wu, S.Y.; Yu, M.; Huang, S.H.; Lee, C.W.; Jiang, M.J.; Lin, P.Y.; Yang, T.T.; Kuo, Y.M. Hypertension accelerates Alzheimer’s disease-related pathologies in pigs and 3xTg mice. Front. Aging Neurosci., 2018, 10(73), 73.
[http://dx.doi.org/10.3389/fnagi.2018.00073] [PMID: 29615895]
[19]
Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol. Commun., 2018, 6(1), 22.
[http://dx.doi.org/10.1186/s40478-018-0515-3] [PMID: 29499767]
[20]
Shi, H.; Hu, X.; Leak, R.K.; Shi, Y.; An, C.; Suenaga, J.; Chen, J.; Gao, Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp. Neurol., 2015, 272, 17-25.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.017] [PMID: 25819104]
[21]
Skoog, I.; Lernfelt, B.; Landahl, S.; Palmertz, B.; Andreasson, L.A.; Nilsson, L.; Persson, G.; Odén, A.; Svanborg, A. 15-year longitudinal study of blood pressure and dementia. Lancet, 1996, 347(9009), 1141-1145.
[http://dx.doi.org/10.1016/S0140-6736(96)90608-X] [PMID: 8609748]
[22]
Ruitenberg, A.; Skoog, I.; Ott, A.; Aevarsson, O.; Witteman, J.C.M.; Lernfelt, B.; van Harskamp, F.; Hofman, A.; Breteler, M.M.B. Blood pressure and risk of dementia: results from the Rotterdam study and the Gothenburg H-70 Study. Dement. Geriatr. Cogn. Disord., 2001, 12(1), 33-39.
[http://dx.doi.org/10.1159/000051233] [PMID: 11125239]
[23]
Qiu, C.; Winblad, B.; Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol., 2005, 4(8), 487-499.
[http://dx.doi.org/10.1016/S1474-4422(05)70141-1] [PMID: 16033691]
[24]
Virdis, A.; Duranti, E.; Taddei, S. Oxidative stress and vascular damage in hypertension: role of angiotensin II. Int. J. Hypertens., 2011., 2011916310.
[http://dx.doi.org/10.4061/2011/916310] [PMID: 21747985]
[25]
Feldstein, C.A. Association between chronic blood pressure changes and development of Alzheimer’s disease. J. Alzheimers Dis., 2012, 32(3), 753-763.
[http://dx.doi.org/10.3233/JAD-2012-120613] [PMID: 22890096]
[26]
Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress and vascular dysfunction in hypertension. BioMed Res. Int., 2014, 2014, 406960.
[http://dx.doi.org/10.1155/2014/406960] [PMID: 25136585]
[27]
Jackson, R.E.; Bellamy, M.C. Antihypertensive drugs. Br. J. Anaesth., 2015, 15(6), 280-285.
[http://dx.doi.org/10.1093/bjaceaccp/mku061]
[28]
Anekonda, T.S.; Quinn, J.F. Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim. Biophys. Acta, 2011, 1812(12), 1584-1590.
[http://dx.doi.org/10.1016/j.bbadis.2011.08.013] [PMID: 21925266]
[29]
Bachmeier, C.; Beaulieu-Abdelahad, D.; Mullan, M.; Paris, D. Selective dihydropyiridine compounds facilitate the clearance of β-amyloid across the blood-brain barrier. Eur. J. Pharmacol., 2011, 659(2-3), 124-129.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.048] [PMID: 21497592]
[30]
Appleby, B.S.; Nacopoulos, D.; Milano, N.; Zhong, K.; Cummings, J.L. A review: treatment of Alzheimer’s disease discovered in repurposed agents. Dement. Geriatr. Cogn. Disord., 2013, 35(1-2), 1-22.
[http://dx.doi.org/10.1159/000345791] [PMID: 23307039]
[31]
Kim, T.W. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer’s disease. Neurotherapeutics, 2015, 12(1), 132-142.
[http://dx.doi.org/10.1007/s13311-014-0325-7] [PMID: 25549849]
[32]
Copenhaver, P.F.; Anekonda, T.S.; Musashe, D.; Robinson, K.M.; Ramaker, J.M.; Swanson, T.L.; Wadsworth, T.L.; Kretzschmar, D.; Woltjer, R.L.; Quinn, J.F.C. A translational continuum of model systems for evaluating treatment strategies in Alzheimer’s disease: isradipine as a candidate drug. Dis. Model. Mech., 2011, 4(5), 634-648.
[http://dx.doi.org/10.1242/dmm.006841] [PMID: 21596710]
[33]
Kennelly, S.; Abdullah, L.; Kenny, R.A.; Mathura, V.; Luis, C.A.; Mouzon, B.; Crawford, F.; Mullan, M.; Lawlor, B. Apolipoprotein E genotype-specific short-term cognitive benefits of treatment with the antihypertensive nilvadipine in Alzheimer’s patients--an open-label trial. Int. J. Geriatr. Psychiatry, 2012, 27(4), 415-422.
[http://dx.doi.org/10.1002/gps.2735] [PMID: 21560164]
[34]
Chakroborty, S.; Stutzmann, G.E. Calcium channelopathies and Alzheimer’s disease: insight into therapeutic success and failures. Eur. J. Pharmacol., 2014, 739, 83-95.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.012] [PMID: 24316360]
[35]
Paris, D.; Quadros, A.; Humphrey, J.; Patel, N.; Crescentini, R.; Crawford, F.; Mullan, M. Nilvadipine antagonizes both Aβ vasoactivity in isolated arteries and the reduced cerebral blood flow in APPsw transgenic mice. Brain Res., 2004, 999(1), 53-61.
[http://dx.doi.org/10.1016/j.brainres.2003.11.061] [PMID: 14746921]
[36]
Venkat, P.; Chopp, M.; Chen, J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat. Med. J., 2016, 57(3), 223-228.
[http://dx.doi.org/10.3325/cmj.2016.57.223] [PMID: 27374823]
[37]
Iwasaki, K.; Egashira, N.; Takagaki, Y.; Yoshimitsu, Y.; Hatip-Al-Khatib, I.; Mishima, K.; Fujiwara, M. Nilvadipine prevents the impairment of spatial memory induced by cerebral ischemia combined with β-amyloid in rats. Biol. Pharm. Bull., 2007, 30(4), 698-701.
[http://dx.doi.org/10.1248/bpb.30.698] [PMID: 17409505]
[38]
Morin, A.; Mouzon, B.; Ferguson, S.; Paris, D.; Saltiel, N.; Lungmus, C.; Mullan, M.; Crawford, F. Treatment with nilvadipine mitigates inflammatory pathology and improves spatial memory in aged hTau mice after repetitive mild TBI. Front. Aging Neurosci., 2018, 10(292), 292.
[http://dx.doi.org/10.3389/fnagi.2018.00292] [PMID: 30364309]
[39]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[40]
Lawlor, B.; Segurado, R.; Kennelly, S.; Olde Rikkert, M.G.M.; Howard, R.; Pasquier, F.; Börjesson-Hanson, A.; Tsolaki, M.; Lucca, U.; Molloy, D.W.; Coen, R.; Riepe, M.W.; Kálmán, J.; Kenny, R.A.; Cregg, F.; O’Dwyer, S.; Walsh, C.; Adams, J.; Banzi, R.; Breuilh, L.; Daly, L.; Hendrix, S.; Aisen, P.; Gaynor, S.; Sheikhi, A.; Taekema, D.G.; Verhey, F.R.; Nemni, R.; Nobili, F.; Franceschi, M.; Frisoni, G.; Zanetti, O.; Konsta, A.; Anastasios, O.; Nenopoulou, S.; Tsolaki-Tagaraki, F.; Pakaski, M.; Dereeper, O.; de la Sayette, V.; Sénéchal, O.; Lavenu, I.; Devendeville, A.; Calais, G.; Crawford, F.; Mullan, M. NILVAD Study Group. Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. PLoS Med., 2018, 15(9), e1002660.
[http://dx.doi.org/10.1371/journal.pmed.1002660] [PMID: 30248105]
[41]
Tan, Z.; Chen, Y.; Xie, W.; Liu, X.; Zhu, Y.; Zhu, Y. Nimodipine attenuates tau phosphorylation at Ser396 via miR-132/GSK-3β pathway in chronic cerebral hypoperfusion rats. Eur. J. Pharmacol., 2018, 819, 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.027] [PMID: 29042207]
[42]
Zheng, H.; Wang, Y.; Wang, A.; Li, H.; Wang, D.; Zhao, X.; Wang, P.; Shen, H.; Zuo, L.; Pan, Y.; Li, Z.; Meng, X.; Wang, X.; Shi, W.; Ju, Y.; Liu, L.; Dong, K.; Wang, C.; Sui, R.; Xue, R.; Pan, X.; Niu, X.; Luo, B.; Sui, Y.; Wang, H.; Feng, T.; Wang, Y. On behalf of the NICE trial group. The efficacy and safety of nimodipine in acute ischemic stroke patients with mild cognitive impairment: a double-blind, randomized, placebo-controlled trial. Sci. Bull., 2019, 64(2), 101-107.
[http://dx.doi.org/10.1016/j.scib.2018.12.006]
[43]
Sun, Y.; Rui, Y.; Wenliang, Z.; Tang, X. Nimodipine semi-solid capsules containing solid dispersion for improving dissolution. Int. J. Pharm., 2008, 359(1-2), 144-149.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.040] [PMID: 18499371]
[44]
Moreno, L.C.G.E.A.I.; Solas, M.; Martínez-Ohárriz, M.C.; Muñoz, E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Pegylated nanoparticles for the oral delivery of nimodipine: pharmacokinetics and effect on the anxiety and cognition in mice. Int. J. Pharm., 2018, 543(1-2), 245-256.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.048] [PMID: 29604372]
[45]
Goel, R.; Bhat, S.A.; Hanif, K.; Nath, C.; Shukla, R. Perindopril attenuates lipopolysaccharide-induced amyloidogenesis and memory impairment by suppression of oxidative stress and RAGE activation. ACS Chem. Neurosci., 2016, 7(2), 206-217.
[http://dx.doi.org/10.1021/acschemneuro.5b00274] [PMID: 26689453]
[46]
Vahid, M.; Ganji, F.; Sepehri, H.; Nazari, Z. Captopril modifies angiotensin-converting enzyme but not choline acetyltransferase gene expression in the frontal cortex of renovascular hypertensive rats. Natl. J. Physiol. Pharm. Pharmacol., 2017, 7(6), 599-602.
[http://dx.doi.org/10.5455/njppp.2017.7.0202314022017]
[47]
Torika, N.; Asraf, K.; Roasso, E.; Danon, A.; Fleisher-Berkovich, S. Angiotensin converting enzyme inhibitors ameliorate brain inflammation associated with microglial activation: possible implications for Alzheimer’s disease. J. Neuroimmune Pharmacol., 2016, 11(4), 774-785.
[http://dx.doi.org/10.1007/s11481-016-9703-8] [PMID: 27562846]
[48]
Wright, J.W.; Harding, J.W. Contributions by the brain renin-angiotensin system to memory, cognition and Alzheimer’s disease. J. Alzheimers Dis., 2019, 67(2), 469-480.
[http://dx.doi.org/10.3233/JAD-181035] [PMID: 30664507]
[49]
Fazal, K.; Perera, G.; Khondoker, M.; Howard, R.; Stewart, R. Associations of centrally acting ACE inhibitors with cognitive decline and survival in Alzheimer’s disease. BJPsych Open, 2017, 3(4), 158-164.
[http://dx.doi.org/10.1192/bjpo.bp.116.004184] [PMID: 28713585]
[50]
Quitterer, U. AbdAlla, S. Improvements of symptoms of Alzheimer’s disease by inhibition of the angiotensin system. Pharmacol. Res., 2020, 154, 104230.
[http://dx.doi.org/10.1016/j.phrs.2019.04.014] [PMID: 30991105]
[51]
Liu, S.; Ando, F.; Fujita, Y.; Liu, J.; Maeda, T.; Shen, X.; Kikuchi, K.; Matsumoto, A.; Yokomori, M.; Tanabe-Fujimura, C.; Shimokata, H.; Michikawa, M.; Komano, H.; Zou, K. A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ACE deletion exacerbate Alzheimer’s disease pathology in mice. J. Biol. Chem., 2019, 294(25), 9760-9770.
[http://dx.doi.org/10.1074/jbc.RA118.006420] [PMID: 31072831]
[52]
Hemming, M.L.; Selkoe, D.J.; Farris, W. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol. Dis., 2007, 26(1), 273-281.
[http://dx.doi.org/10.1016/j.nbd.2007.01.004] [PMID: 17321748]
[53]
Yamada, K.; Uchida, S.; Takahashi, S.; Takayama, M.; Nagata, Y.; Suzuki, N.; Shirakura, S.; Kanda, T. Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer’s disease. Brain Res., 2010, 1352, 176-186.
[http://dx.doi.org/10.1016/j.brainres.2010.07.006] [PMID: 20627092]
[54]
. AbdAlla, S.; Langer, A.; Fu, X.; Quitterer, U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int. J. Mol. Sci., 2013, 14(8), 16917-16942.
[http://dx.doi.org/10.3390/ijms140816917] [PMID: 23959119]
[55]
Asraf, K.; Torika, N.; Apte, R.N.; Fleisher-Berkovich, S. Microglial activation is modulated by captopril: in vitro and in vivo studies. Front. Cell. Neurosci., 2018, 12(116), 116.
[http://dx.doi.org/10.3389/fncel.2018.00116] [PMID: 29765306]
[56]
Parameswari, R.P.; Girish, R.; Babu, C.S.; Thyagarajan, S.P.; Dwarakanath, B.S. Beneficial effects of angiotensin converting enzyme inhibitor captopril on sleep deprivation-induced cognitive impairment. Alzheimers Dement., 2017, 13(7)(Suppl.), 946-947.
[http://dx.doi.org/10.1016/j.jalz.2017.06.1858]
[57]
Dong, Y.F.; Kataoka, K.; Tokutomi, Y.; Nako, H.; Nakamura, T.; Toyama, K.; Sueta, D.; Koibuchi, N.; Yamamoto, E.; Ogawa, H.; Kim-Mitsuyama, S. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. FASEB J., 2011, 25(9), 2911-2920.
[http://dx.doi.org/10.1096/fj.11-182873] [PMID: 21593435]
[58]
Culman, J.; Blume, A.; Gohlke, P.; Unger, T. The renin-angiotensin system in the brain: possible therapeutic implications for AT(1)-receptor blockers. J. Hum. Hypertens., 2002, 16(Suppl. 3), S64-S70.
[http://dx.doi.org/10.1038/sj.jhh.1001442] [PMID: 12140731]
[59]
Schmieder, R.E. Mechanisms for the clinical benefits of angiotensin II receptor blockers. Am. J. Hypertens., 2005, 18(5 Pt 1), 720-730.
[http://dx.doi.org/10.1016/j.amjhyper.2004.11.032] [PMID: 15882557]
[60]
Trigiani, L.J.; Royea, J.; Lacalle-Aurioles, M.; Tong, X.K.; Hamel, E. Pleiotropic benefits of the angiotensin receptor blocker candesartan in a mouse model of Alzheimer disease. Hypertension, 2018, 72(5), 1217-1226.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11775] [PMID: 30354809]
[61]
Torika, N.; Asraf, K.; Apte, R.N.; Fleisher-Berkovich, S. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci. Ther., 2018, 24(3), 231-242.
[http://dx.doi.org/10.1111/cns.12802] [PMID: 29365370]
[62]
Trofimiuk, E.; Wielgat, P.; Braszko, J.J. Candesartan, angiotensin II type 1 receptor blocker is able to relieve age-related cognitive impairment. Pharmacol. Rep., 2018, 70(1), 87-92.
[http://dx.doi.org/10.1016/j.pharep.2017.07.016] [PMID: 29331792]
[63]
Wang, J.; Ho, L.; Chen, L.; Zhao, Z.; Zhao, W.; Qian, X.; Humala, N.; Seror, I.; Bartholomew, S.; Rosendorff, C.; Pasinetti, G.M. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest., 2007, 117(11), 3393-3402.
[http://dx.doi.org/10.1172/JCI31547] [PMID: 17965777]
[64]
Arjmand Abbassi, Y.; Mohammadi, M.T.; Sarami Foroshani, M.; Raouf Sarshoori, J. Captopril and valsartan may improve cognitive function through potentiation of the brain antioxidant defence system and attenuation of oxidative/nitrosative damage in STZ-induced dementia in rat. Adv. Pharm. Bull., 2016, 6(4), 531-539.
[http://dx.doi.org/10.15171/apb.2016.067] [PMID: 28101460]
[65]
Tsukuda, K.; Mogi, M.; Iwanami, J.; Min, L.J.; Sakata, A.; Jing, F.; Iwai, M.; Horiuchi, M. Cognitive deficit in amyloid-β-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-γ activation. Hypertension, 2009, 54(4), 782-787.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.136879] [PMID: 19635982]
[66]
Mogi, M.; Li, J.M.; Tsukuda, K.; Iwanami, J.; Min, L.J.; Sakata, A.; Fujita, T.; Iwai, M.; Horiuchi, M. Telmisartan prevented cognitive decline partly due to PPAR-γ activation. Biochem. Biophys. Res. Commun., 2008, 375(3), 446-449.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.032] [PMID: 18715543]
[67]
Kurata, T.; Lukic, V.; Kozuki, M.; Wada, D.; Miyazaki, K.; Morimoto, N.; Ohta, Y.; Deguchi, K.; Ikeda, Y.; Kamiya, T.; Abe, K. Telmisartan reduces progressive accumulation of cellular amyloid beta and phosphorylated tau with inflammatory responses in aged spontaneously hypertensive stroke resistant rat. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2580-2590.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.05.023] [PMID: 25241340]
[68]
Singh, B.; Sharma, B.; Jaggi, A.S.; Singh, N. Attenuating effect of lisinopril and telmisartan in intracerebroventricular streptozotocin induced experimental dementia of Alzheimer’s disease type: possible involvement of PPAR-γ agonistic property. J. Renin Angiotensin Aldosterone Syst., 2013, 14(2), 124-136.
[http://dx.doi.org/10.1177/1470320312459977] [PMID: 23060470]
[69]
Gao, Y.; Li, W.; Liu, Y.; Wang, Y.; Zhang, J.; Li, M.; Bu, M. Effect of telmisartan on preventing learning and memory deficits via peroxisome proliferator-activated receptor-γ in vascular dementia spontaneously hypertensive rats. J. Stroke Cerebrovasc. Dis., 2018, 27(2), 277-285.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.01.025] [PMID: 29241675]
[70]
Noda, A.; Fushiki, H.; Murakami, Y.; Sasaki, H.; Miyoshi, S.; Kakuta, H.; Nishimura, S. Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques. Nucl. Med. Biol., 2012, 39(8), 1232-1235.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.06.012] [PMID: 22890047]
[71]
Wharton, W.; Goldstein, F.C.; Tansey, M.G.; Brown, A.L.; Tharwani, S.D.; Verble, D.D.; Cintron, A.; Kehoe, P.G. Rationale and design of the mechanistic potential of antihypertensives in preclinical Alzheimer’s (HEART) trial. J. Alzheimers Dis., 2018, 61(2), 815-824.
[http://dx.doi.org/10.3233/JAD-161198] [PMID: 29254080]
[72]
Danielyan, L.; Klein, R.; Hanson, L.R.; Buadze, M.; Schwab, M.; Gleiter, C.H.; Frey, W.H. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res., 2010, 13(2-3), 195-201.
[http://dx.doi.org/10.1089/rej.2009.0944] [PMID: 20370487]
[73]
Drews, H.J.; Yenkoyan, K.; Lourhmati, A.; Buadze, M.; Kabisch, D.; Verleysdonk, S.; Petschak, S.; Beer-Hammer, S.; Davtyan, T.; Frey, W.H., II; Gleiter, C.H.; Schwab, M.; Danielyan, L. Intranasal losartan decreases perivascular beta amyloid, inflammation and the decline of neurogenesis in hypertensive rats. Neurotherapeutics, 2019, 16(3), 725-740.
[http://dx.doi.org/10.1007/s13311-019-00723-6] [PMID: 30796737]
[74]
Salmani, H.; Hosseini, M.; Beheshti, F.; Baghcheghi, Y.; Sadeghnia, H.R.; Soukhtanloo, M.; Shafei, M.N.; Khazaei, M. Angiotensin receptor blocker, losartan ameliorates neuroinflammation and behavioral consequences of lipopolysaccharide injection. Life Sci., 2018, 203, 161-170.
[http://dx.doi.org/10.1016/j.lfs.2018.04.033] [PMID: 29684446]
[75]
Papadopoulos, P.; Tong, X.K.; Imboden, H.; Hamel, E. Losartan improves cerebrovascular function in a mouse model of Alzheimer’s disease with combined overproduction of amyloid-β and transforming growth factor-β1. J. Cereb. Blood Flow Metab., 2017, 37(6), 1959-1970.
[http://dx.doi.org/10.1177/0271678X16658489] [PMID: 27389178]
[76]
Lo, M.W.; Goldberg, M.R.; McCrea, J.B.; Lu, H.; Furtek, C.I.; Bjornsson, T.D. Pharmacokinetics of losartan, an angiotensin II receptor antagonist and its active metabolite EXP3174 in humans. Clin. Pharmacol. Ther., 1995, 58(6), 641-649.
[http://dx.doi.org/10.1016/0009-9236(95)90020-9] [PMID: 8529329]
[77]
Fogari, R.; Mugellini, A.; Zoppi, A.; Derosa, G.; Pasotti, C.; Fogari, E.; Preti, P. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J. Hum. Hypertens., 2003, 17(11), 781-785.
[http://dx.doi.org/10.1038/sj.jhh.1001613] [PMID: 14578918]
[78]
National Library of Medicine. https://clinicaltrials.gov/ct2/show/NCT03354143?term=NCT03354143&rank=1 (Accessed on: 18 August 2019).
[79]
Mason, R.P.; Giles, T.D.; Sowers, J.R. Evolving mechanisms of action of beta blockers: focus on nebivolol. J. Cardiovasc. Pharmacol., 2009, 54(2), 123-128.
[http://dx.doi.org/10.1097/FJC.0b013e3181ad207b] [PMID: 19528811]
[80]
Gorre, F.; Vandekerckhove, H. Beta-blockers: focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol., 2010, 65(5), 565-570.
[http://dx.doi.org/10.1080/AC.65.5.2056244] [PMID: 21125979]
[81]
Peskind, E.R.; Tsuang, D.W.; Bonner, L.T.; Pascualy, M.; Riekse, R.G.; Snowden, M.B.; Thomas, R.; Raskind, M.A. Propranolol for disruptive behaviors in nursing home residents with probable or possible Alzheimer disease: a placebo-controlled study. Alzheimer Dis. Assoc. Disord., 2005, 19(1), 23-28.
[http://dx.doi.org/10.1097/01.wad.0000155067.16313.5e] [PMID: 15764868]
[82]
Wang, J.; Zhao, Z.; Lin, E.; Zhao, W.; Qian, X.; Freire, D.; Bilski, A.E.; Cheng, A.; Vempati, P.; Ho, L.; Ono, K.; Yamada, M.; Pasinetti, G.M. Unintended effects of cardiovascular drugs on the pathogenesis of Alzheimer’s disease. PLoS One, 2013, 8(6), e65232.
[http://dx.doi.org/10.1371/journal.pone.0065232] [PMID: 23762322]
[83]
Dobarro, M.; Gerenu, G.; Ramírez, M.J. Propranolol reduces cognitive deficits, amyloid and tau pathology in Alzheimer’s transgenic mice. Int. J. Neuropsychopharmacol., 2013, 16(10), 2245-2257.
[http://dx.doi.org/10.1017/S1461145713000631] [PMID: 23768694]
[84]
Gelber, R.P.; Ross, G.W.; Petrovitch, H.; Masaki, K.H.; Launer, L.J.; White, L.R. Antihypertensive medication use and risk of cognitive impairment: the Honolulu-Asia Aging Study. Neurology, 2013, 81(10), 888-895.
[http://dx.doi.org/10.1212/WNL.0b013e3182a351d4] [PMID: 23911753]
[85]
Rosini, M.; Simoni, E.; Bartolini, M.; Cavalli, A.; Ceccarini, L.; Pascu, N.; McClymont, D.W.; Tarozzi, A.; Bolognesi, M.L.; Minarini, A.; Tumiatti, V.; Andrisano, V.; Mellor, I.R.; Melchiorre, C. Inhibition of acetylcholinesterase, β-amyloid aggregation and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J. Med. Chem., 2008, 51(15), 4381-4384.
[http://dx.doi.org/10.1021/jm800577j] [PMID: 18605718]
[86]
Liu, J.; Wang, M. Carvedilol protection against endogenous Aβ-induced neurotoxicity in N2a cells. Cell Stress Chaperones, 2018, 23(4), 695-702.
[http://dx.doi.org/10.1007/s12192-018-0881-6] [PMID: 29435723]
[87]
Yue, T.L.; Cheng, H.Y.; Lysko, P.G.; McKenna, P.J.; Feuerstein, R.; Gu, J.L.; Lysko, K.A.; Davis, L.L.; Feuerstein, G. Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J. Pharmacol. Exp. Ther., 1992, 263(1), 92-98.
[PMID: 1357162]
[88]
Kumar, A.; Dogra, S. Neuroprotective effect of carvedilol, an adrenergic antagonist against colchicine induced cognitive impairment and oxidative damage in rat. Pharmacol. Biochem. Behav., 2009, 92(1), 25-31.
[http://dx.doi.org/10.1016/j.pbb.2008.10.005] [PMID: 18992766]
[89]
Kumar, A.; Dogra, S.; Prakash, A. Effect of carvedilol on behavioral, mitochondrial dysfunction and oxidative damage against D-galactose induced senescence in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(5), 431-441.
[http://dx.doi.org/10.1007/s00210-009-0442-8] [PMID: 19685040]
[90]
Gao, X.; Wu, B.; Fu, Z.; Zhang, Z.; Xu, G. Carvedilol abrogates hypoxia-induced oxidative stress and neuroinflammation in microglial BV2 cells. Eur. J. Pharmacol., 2017, 814, 144-150.
[http://dx.doi.org/10.1016/j.ejphar.2017.08.013] [PMID: 28821450]
[91]
Wang, J.; Ono, K.; Dickstein, D.L.; Arrieta-Cruz, I.; Zhao, W.; Qian, X.; Lamparello, A.; Subnani, R.; Ferruzzi, M.; Pavlides, C.; Ho, L.; Hof, P.R.; Teplow, D.B.; Pasinetti, G.M. Carvedilol as a potential novel agent for the treatment of Alzheimer’s disease. Neurobiol. Aging, 2011, 32(12), 2321.e1-e12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.004] [PMID: 20579773]
[92]
National Library of Medicine. Trial of carvedilol in Alzheimer’s disease., https://clinicaltrials.gov/ct2/show/NCT01354444?term=NCT01354444&rank=1 (Accessed on: 18 August 2019).
[93]
Strazzullo, P.; Kerry, S.M.; Barbato, A.; Versiero, M.; D’Elia, L.; Cappuccio, F.P. Do statins reduce blood pressure?: a meta-analysis of randomized, controlled trials. Hypertension, 2007, 49(4), 792-798.
[http://dx.doi.org/10.1161/01.HYP.0000259737.43916.42] [PMID: 17309949]
[94]
Poly, T.N.; Islam, M.M.; Walther, B.A.; Yang, H.-C.; Wu, C.-C.; Lin, M.-C.; Li, Y.-C. Association between the use of statin and risk of dementia: a meta-analysis of observational studies. Neuroepidemiology, 2020, 54(3), 214-226.
[http://dx.doi.org/10.1159/000503105] [PMID: 31574510]
[95]
Chu, C.S.; Tseng, P.T.; Stubbs, B.; Chen, T.Y.; Tang, C.H.; Li, D.J.; Yang, W.C.; Chen, Y.W.; Wu, C.K.; Veronese, N.; Carvalho, A.F.; Fernandes, B.S.; Herrmann, N.; Lin, P.Y. Use of statins and the risk of dementia and mild cognitive impairment: A systematic review and meta-analysis. Sci. Rep., 2018, 8(1), 5804.
[http://dx.doi.org/10.1038/s41598-018-24248-8] [PMID: 29643479]
[96]
Vazirinejad, R.; Mirmotalebi, M.; Bageri, M.; Kounis, N.G.; Koniari, I.; Lilley, J.M.; Gommnami, N. Age-related effect of antihypertensive treatment on cognitive performance: is it better preventing dementia in older age? Am. J. Alzheimers Dis. Other Demen., 2019, 34(7-8), 486-491.
[http://dx.doi.org/10.1177/1533317519859197] [PMID: 31315417]
[97]
McGeer, E.G.; McGeer, P.L. Clinically tested drugs for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2003, 12(7), 1143-1151.
[http://dx.doi.org/10.1517/13543784.12.7.1143] [PMID: 12831349]
[98]
van Dalen, J.W.; Moll van Charante, E.P.; van Gool, W.A.; Richard, E. Discontinuation of antihypertensive medication, cognitive complaints and incident dementia. J. Am. Med. Dir. Assoc., 2019, 20(9), 1091-1097.e3.
[http://dx.doi.org/10.1016/j.jamda.2018.12.006] [PMID: 30738826]
[99]
Larsson, S.C.; Markus, H.S. Does treating vascular risk factors prevent dementia and Alzheimer’s disease? A systematic review and meta-analysis. J. Alzheimers Dis., 2018, 64(2), 657-668.
[http://dx.doi.org/10.3233/JAD-180288] [PMID: 29914039]
[100]
Ntountaniotis, D.; Andreadelis, I.; Kellici, T.F.; Karageorgos, V.; Leonis, G.; Christodoulou, E.; Kiriakidi, S.; Becker-Baldus, J.; Stylos, E.K.; Chatziathanasiadou, M.V.; Chatzigiannis, C.M.; Damalas, D.E.; Aksoydan, B.; Javornik, U.; Valsami, G.; Glaubitz, C.; Durdagi, S.; Thomaidis, N.S.; Kolocouris, A.; Plavec, J.; Tzakos, A.G.; Liapakis, G.; Mavromoustakos, T. Host-guest interactions between candesartan and its prodrug candesartan cilexetil in complex with 2-hydroxypropyl-β-cyclodextrin: on the biological potency for angiotensin II antagonism. Mol. Pharm., 2019, 16(3), 1255-1271.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01212] [PMID: 30681344]
[101]
Hu, Z.; Wang, L.; Ma, S.; Kirisci, L.; Feng, Z.; Xue, Y.; Klunk, W.E.; Kamboh, M.I.; Sweet, R.A.; Becker, J.; Lv, Q.; Lopez, O.L.; Xie, X.Q. Synergism of antihypertensives and cholinesterase inhibitors in Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2018, 4, 542-555.
[http://dx.doi.org/10.1016/j.trci.2018.09.001] [PMID: 30386819]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy