Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Design, Synthesis and Biological Activity of New Hydroxamic Acids Containing 2-Imidazolylphenyl(oxy/thio)alkanoic Fragment

Author(s): Desislava V. Stanisheva, Gjorgji Atanasov, Margarita D. Aposstolova and Ognyan I. Petrov *

Volume 17, Issue 1, 2021

Published on: 14 February, 2020

Page: [59 - 66] Pages: 8

DOI: 10.2174/1573407216666200214093400

Price: $65

Abstract

Background: Histone Deacetylase (HDAC) inhibitors are a new class of therapeutic compounds that show promising results in a series of preclinical and clinical anticancer studies. Hydroxamic acids belong to one of the most significant classes of HDAC inhibitors. The member vorinostat (SAHA) was approved by the U.S. Food and Drug Administration for the treatment of cutaneous T-cell lymphoma.

Methods: A series of eight novel hydroxamic acids containing 2-imidazolylphenyl(oxy/thio) alkanoic fragment designed to target Histone Deacetylase (HDAC) were synthesized in five steps from easily accessible 2(3H)-benzoxazolones and 2(3H)-benzthiazolones. The newly synthesized compounds were characterized by 1H, 13C NMR, and elemental analysis.

Results: The structure-activity relationship was examined via linker length alternation and variation of the heteroatom (oxygen or sulfur) and chlorine substitution pattern of the starting materials. The compounds were tested for their cytotoxic activity against two human cancer cell lines (HT-29 and MDA-MB-231). Our data indicate that the compound 6.1d is active in the micromolar range with IC50 of 9.7 μM for MDA-MB-231 cells. DNA fragmentation analysis of the most active compounds confirmed that apoptosis could be one of the mechanisms involved in cell death.

Conclusion: Taken together, the results revealed that 6d may become a promising lead compound for new anticancer drugs discovery.

Keywords: Hydroxamic acids, HDAC inhibitors, imidazolone, benzoxazolone, ring transformation, nucleosomal histones.

Graphical Abstract
[1]
Ojha, R.; Huang, H.L.; Fu, W.C.; Wu, Y.W.; Nepali, K.; Lai, M.J.; Su, C.J.; Sung, T.Y.; Chen, Y.L.; Pan, S.L.; Liou, J.P. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur. J. Med. Chem., 2018, 150, 667-677.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.006] [PMID: 29567459]
[2]
Liu, J.; Li, G.; Wang, X.; Wang, L.; Zhao, R.; Wang, J.; Kong, Y.; Ding, J.; Li, J.; Zhang, L. Droxinostat, a histone deacetylase inhibitor, induces apoptosis in hepatocellular carcinoma cell lines via activation of the mitochondrial pathway and down regulation of FLIP. Transl. Oncol., 2016, 9(1), 70-78.
[http://dx.doi.org/10.1016/j.tranon.2016.01.004] [PMID: 26947884]
[3]
Wang, L.; Mizzen, C.; Ying, C.; Candau, R.; Barlev, N.; Brownell, J.; Allis, C.D.; Berger, S.L. Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. Mol. Cell. Biol., 1997, 17(1), 519-527.
[http://dx.doi.org/10.1128/MCB.17.1.519] [PMID: 8972232]
[4]
Yang, X.J.; Ogryzko, V.V.; Nishikawa, J.; Howard, B.H.; Nakatani, Y.A. p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature, 1996, 382(6589), 319-324.
[http://dx.doi.org/10.1038/382319a0] [PMID: 8684459]
[5]
Xu, W.; Edmondson, D.G.; Roth, S.Y. Mammalian GCN5 and P/- CAF acetyltransferases have homologous amino-terminal domainsol., 1998, 18(10), 5659-5669.
[http://dx.doi.org/10.1128/MCB.18.10.5659] [PMID: 9742083]
[6]
Avvakumov, N.; Côté, J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene, 2007, 26(37), 5395-5407.
[http://dx.doi.org/10.1038/sj.onc.1210608] [PMID: 17694081]
[7]
Mai, A.; Massa, S.; Rotili, D.; Cerbara, I.; Valente, S.; Pezzi, R.; Simeoni, S.; Ragno, R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med. Res. Rev., 2005, 25(3), 261-309.
[http://dx.doi.org/10.1002/med.20024] [PMID: 15717297]
[8]
Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res., 2007, 17(3), 195-211.
[http://dx.doi.org/10.1038/sj.cr.7310149] [PMID: 17325692]
[9]
Witt, O.; Deubzer, H.E.; Milde, T.; Oehme, I. HDAC family: What are the cancer relevant targets? Cancer Lett., 2009, 277(1), 8-21.
[http://dx.doi.org/10.1016/j.canlet.2008.08.016] [PMID: 18824292]
[10]
McKinsey, T.A. Isoform-selective HDAC inhibitors: Closing in on translational medicine for the heart. J. Mol. Cell. Cardiol., 2011, 51(4), 491-496.
[http://dx.doi.org/10.1016/j.yjmcc.2010.11.009] [PMID: 21108947]
[11]
Rasheed, W.K.; Johnstone, R.W.; Prince, H.M. Histone deacetylase inhibitors in cancer therapy. Expert Opin. Investig. Drugs, 2007, 16(5), 659-678.
[http://dx.doi.org/10.1517/13543784.16.5.659] [PMID: 17461739]
[12]
Kelly, W.K.; O’Connor, O.A.; Marks, P.A. Histone deacetylase inhibitors: From target to clinical trials. Expert Opin. Investig. Drugs, 2002, 11(12), 1695-1713.
[http://dx.doi.org/10.1517/13543784.11.12.1695] [PMID: 12457432]
[13]
Wagner, J.M.; Hackanson, B.; Lübbert, M.; Jung, M. Histone Deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics, 2010, 1(3-4), 117-136.
[http://dx.doi.org/10.1007/s13148-010-0012-4] [PMID: 21258646]
[14]
Miller, T.A.; Witter, D.J.; Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem., 2003, 46(24), 5097-5116.
[http://dx.doi.org/10.1021/jm0303094] [PMID: 14613312]
[15]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[16]
Yuan, Z.; Sun, Q.; Li, D.; Miao, S.; Chen, S.; Song, L.; Gao, C.; Chen, Y.; Tan, C.; Jiang, Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur. J. Med. Chem., 2017, 134, 281-292.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.017] [PMID: 28419930]
[17]
Wang, J.; Su, M.; Li, T.; Gao, A.; Yang, W.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of thienopyrimidine hydroxamic acid based derivatives as structurally novel Histone Deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2017, 128, 293-299.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.035] [PMID: 28213282]
[18]
Kim, D.H.; Lee, J.; Kim, K.N.; Kim, H.J.; Jeung, H.C.; Chung, H.C.; Kwon, H.J. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor. Biochem. Biophys. Res. Commun., 2007, 356(1), 233-238.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.126] [PMID: 17353008]
[19]
Holland, K.P.; Elford, H.L.; Bracchi, V.; Annis, C.G.; Schuster, S.M.; Chakrabarti, D. Antimalarial activities of polyhydroxyphenyl and hydroxamic acid derivatives. Antimicrob. Agents Chemother., 1998, 42(9), 2456-2458.
[http://dx.doi.org/10.1128/AAC.42.9.2456] [PMID: 9736585]
[20]
Mishra, R.C.; Tripathi, R.; Katiyar, D.; Tewari, N.; Singh, D.; Tripathi, R.P. Synthesis of glycosylated β-amino hydroxamates as new class of antimalarials. Bioorg. Med. Chem., 2003, 11(24), 5363-5374.
[http://dx.doi.org/10.1016/j.bmc.2003.09.038] [PMID: 14642580]
[21]
Parvathy, S.; Hussain, I.; Karran, E.H.; Turner, A.J.; Hooper, N.M. Alzheimer’s amyloid precursor protein alpha-secretase is inhibited by hydroxamic acid-based zinc metalloprotease inhibitors: Similarities to the angiotensin converting enzyme secretase. Biochemistry, 1998, 37(6), 1680-1685.
[http://dx.doi.org/10.1021/bi972034y] [PMID: 9484239]
[22]
Brilli, L.L.; Swanhart, L.M.; de Caestecker, M.P.; Hukriede, N.A. HDAC inhibitors in kidney development and disease. Pediatr. Nephrol., 2013, 28(10), 1909-1921.
[http://dx.doi.org/10.1007/s00467-012-2320-8] [PMID: 23052657]
[23]
Marmion, C.; Parker, J.; Nolan, K. Hydroxamic Acids: An Important Class of Metalloenzyme Inhibitors. In: Comprehensive Inorganic Chemistry II: From Elements to Applications; 2nd ed.; Reedijk, J.; Poeppelmeier, K., Eds.; Elsevier., 2013. 3, 683-708
[24]
Muri, E.M.; Nieto, M.J.; Sindelar, R.D.; Williamson, J.S. Hydroxamic acids as pharmacological agents. Curr. Med. Chem., 2002, 9(17), 1631-1653.
[http://dx.doi.org/10.2174/0929867023369402] [PMID: 12171558]
[25]
Stanisheva, D.V.; Gerova, M.S.; Petrov, O.I. Synthesis of a new polycyclic heterocyclic ring system. Part III. Benzo[b]imidazo[1,5-d][1,4]oxazepine-1,4(2H,5H)-diones. Heterocycl. Commun., 2017, 23(1), 23-27.
[http://dx.doi.org/10.1515/hc-2016-0236]
[26]
Petrova, K.; Petrov, O.; Antonova, A.; Kalcheva, V. Synthesis of Benzo[b]imidazo[1,5-d][1,5]-thiazepines. Derivatives of a Novel Ring System. Synth. Commun., 2003, 33(24), 4355-4366.
[http://dx.doi.org/10.1081/SCC-120026866]
[27]
Gerova, M.S.; Petrov, O.I. A convenient synthesis of the new histone deacetylase inhibitor scriptaid. Org. Prep. Proced. Int., 2014, 46(1), 76-79.
[http://dx.doi.org/10.1080/00304948.2014.866471]
[28]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy