Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of New Tetra Triazole Functionalized Calix[4]resorcinarene and Chemosensing of Copper Ions in Aqueous Medium

Author(s): Tahir Qadri , Imdad Ali , Mumtaz Hussain , Farid Ahmed , Muhammad R. Shah and Zahid Hussain *

Volume 24, Issue 3, 2020

Page: [332 - 337] Pages: 6

DOI: 10.2174/1385272824666200211114211

Price: $65

Abstract

A new tetra triazole functionalized calix[4]resorcinarene macrocycle (5) is synthesized and utilized for the detection of copper ions in the aqueous medium. The photophysical potential of compound (5) is examined by a range of cations (Ba2+, Ca2+, Co2+, Hg2+, K+, Mg2+, Mn2+, Na+, NH4 + and Pd2+). The triazole based calix[4]resorcinarene macrocycle (5) has interacted with Cu2+ ion in preference of other cations. A significant quenching has been observed after the addition of 15 μM Cu2+ ion solution, which produced 4.2 folds drift in the absorption intensity of compound (5). Tetra triazole functionalized calix[4]resorcinarene macrocycle showed high selectivity towards copper ion chemosensing without any interference in competitive studies. The pH studies of compound (5) with Cu2+ indicated the maximum chelation between 7- 7.5 pH. The compound (5) is capable to recognize Cu2+ at 1 μM detectable limit. Copper ion was detected in tap water with 15 μM concentration. Job’s plot showed 1:2 binding ratio between macrocycle (5) and Cu2+.

Keywords: Calix[4]resorcinarene, chemosensor, click reaction, copper ion, triazole, water analysis.

« Previous
Graphical Abstract
[1]
Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev., 2011, 111(5), 3433-3458.
[http://dx.doi.org/10.1021/cr100383r] [PMID: 21395328]
[2]
Yang, H.; Tang, Z.; Wang, L.; Zhou, W.; Li, L.; Zhang, Y.; Chen, S. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions. Mater. Sci. Eng. B, 2016, 210, 37-42.
[http://dx.doi.org/10.1016/j.mseb.2016.04.001]
[3]
O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol., 2008, 99(15), 6709-6724.
[http://dx.doi.org/10.1016/j.biortech.2008.01.036] [PMID: 18334292]
[4]
Barnham, K.J.; Bush, A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev., 2014, 43(19), 6727-6749.
[http://dx.doi.org/10.1039/C4CS00138A] [PMID: 25099276]
[5]
Strausak, D.; Mercer, J.F.; Dieter, H.H.; Stremmel, W.; Multhaup, G. Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res. Bull., 2001, 55(2), 175-185.
[http://dx.doi.org/10.1016/S0361-9230(01)00454-3] [PMID: 11470313]
[6]
Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev., 2006, 106(6), 1995-2044.
[http://dx.doi.org/10.1021/cr040410w] [PMID: 16771441]
[7]
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage., 2011, 92(3), 407-418.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
[8]
Bilal, M.; Shah, J.A.; Ashfaq, T.; Gardazi, S.M.H.; Tahir, A.A.; Pervez, A.; Haroon, H.; Mahmood, Q. Waste biomass adsorbents for copper removal from industrial wastewater--a review. J. Hazard. Mater., 2013, 263(Pt 2), 322-333.
[http://dx.doi.org/10.1016/j.jhazmat.2013.07.071] [PMID: 23972667]
[9]
Oliver, B.G. Heavy metal levels of Ottawa and Rideau River sediments. Environ. Sci. Technol., 1973, 7(2), 135-137.
[http://dx.doi.org/10.1021/es60074a009]
[10]
Rai, L.; Gaur, J.; Kumar, H. Phycology and heavy‐metal pollution. Biol. Rev. Camb. Philos. Soc., 1981, 56(2), 99-151.
[http://dx.doi.org/10.1111/j.1469-185X.1981.tb00345.x]
[11]
Guo, M.; Dong, P.; Feng, Y.; Xi, X.; Shao, R.; Tian, X.; Zhang, B.; Zhu, M.; Meng, X. A two-photon fluorescent probe for biological Cu (II) and PPi detection in aqueous solution and in vivo. Biosens. Bioelectron., 2017, 90, 276-282.
[http://dx.doi.org/10.1016/j.bios.2016.11.069] [PMID: 27923190]
[12]
Ghaedi, M.; Niknam, K.; Taheri, K.; Hossainian, H.; Soylak, M. Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2,6-dichlorophenyl-3,3-bis(indolyl)methane loaded on Amberlite XAD-16. Food Chem. Toxicol., 2010, 48(3), 891-897.
[http://dx.doi.org/10.1016/j.fct.2009.12.029] [PMID: 20060028]
[13]
Citak, D.; Tuzen, M. A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food Chem. Toxicol., 2010, 48(5), 1399-1404.
[http://dx.doi.org/10.1016/j.fct.2010.03.008] [PMID: 20226223]
[14]
Shoaee, H.; Roshdi, M.; Khanlarzadeh, N.; Beiraghi, A. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 98, 70-75.
[http://dx.doi.org/10.1016/j.saa.2012.08.027] [PMID: 22983201]
[15]
Maryutina, T.; Musina, N. Determination of metals in heavy oil residues by inductively coupled plasma atomic emission spectroscopy. J. Anal. Chem., 2012, 67(10), 862-867.
[http://dx.doi.org/10.1134/S106193481210005X]
[16]
Dong, Y.; Wang, R.; Li, G.; Chen, C.; Chi, Y.; Chen, G. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem., 2012, 84(14), 6220-6224.
[http://dx.doi.org/10.1021/ac3012126] [PMID: 22686413]
[17]
Wang, F.; Gu, Z.; Lei, W.; Wang, W.; Xia, X.; Hao, Q. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Sens. Actuators B Chem., 2014, 190, 516-522.
[http://dx.doi.org/10.1016/j.snb.2013.09.009]
[18]
Liu, J-M.; Lin, L.P.; Wang, X-X.; Lin, S-Q.; Cai, W-L.; Zhang, L-H.; Zheng, Z-Y. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst (Lond.), 2012, 137(11), 2637-2642.
[http://dx.doi.org/10.1039/c2an35130g] [PMID: 22531278]
[19]
You, G.R.; Park, G.J.; Lee, J.J.; Kim, C. A colorimetric sensor for the sequential detection of Cu(2+) and CN(-) in fully aqueous media: practical performance of Cu(2+). Dalton Trans., 2015, 44(19), 9120-9129.
[http://dx.doi.org/10.1039/C5DT00772K] [PMID: 25900000]
[20]
Hou, L.; Kong, X.; Wang, Y.; Chao, J.; Li, C.; Dong, C.; Wang, Y.; Shuang, S. An anthraquinone-based highly selective colorimetric and fluorometric sensor for sequential detection of Cu2+ and S2- with intracellular application. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(45), 8957-8966.
[http://dx.doi.org/10.1039/C7TB01596H]
[21]
Zhao, W.; Jia, W.; Sun, M.; Liu, X.; Zhang, Q.; Zong, C.; Qu, J.; Gai, H. Colorimetric detection of Cu2+ by surface coordination complexes of polyethyleneimine-capped Au nanoparticles. Sens. Actuators B Chem., 2016, 223, 411-416.
[http://dx.doi.org/10.1016/j.snb.2015.09.119]
[22]
Tang, W.; Chase, D.B.; Sparks, D.L.; Rabolt, J.F. Selective and quantitative detection of trace amounts of mercury (II) ion (Hg2+) and copper (II) ion (Cu2+) using Surface-Enhanced Raman Scattering (SERS). Appl. Spectrosc., 2015, 69(7), 843-849.
[http://dx.doi.org/10.1366/14-07815] [PMID: 26037773]
[23]
Lian, W-N.; Shiue, J.; Wang, H-H.; Hong, W-C.; Shih, P-H.; Hsu, C-K.; Huang, C-Y.; Hsing, C-R.; Wei, C-M.; Wang, J-K.; Wang, Y.L. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2015, 32(5), 627-634.
[PMID: 25822695]
[24]
Gedda, G.; Lee, C-Y.; Lin, Y-C.; Wu, H-f. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sens. Actuators B Chem., 2016, 224, 396-403.
[http://dx.doi.org/10.1016/j.snb.2015.09.065]
[25]
Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram. Int., 2015, 41(7), 8735-8741.
[http://dx.doi.org/10.1016/j.ceramint.2015.03.094]
[26]
Shah, K. ul Ain, N.; Ahmed, F.; Anis, I.; Shah, M. R. A new highly selective chemosensor for the detection of iron ion in aqueous medium based on click generated triazole. Sens. Actuators B Chem., 2017, 249, 515-522.
[http://dx.doi.org/10.1016/j.snb.2017.04.120]
[27]
Ahmed, F.; Shah, K.; Awan, I.Z.; Shah, M.R. Triazole-based highly selective supramolecular sensor for the detection of diclofenac in real samples. Ecotoxicol. Environ. Saf., 2016, 129, 103-108.
[http://dx.doi.org/10.1016/j.ecoenv.2016.03.017] [PMID: 27003618]
[28]
Soomro, Z.H.; Cecioni, S.; Blanchard, H.; Praly, J-P.; Imberty, A.; Vidal, S.; Matthews, S.E. CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins. Org. Biomol. Chem., 2011, 9(19), 6587-6597.
[http://dx.doi.org/10.1039/c1ob05676j] [PMID: 21837347]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy