Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Selenium and Neurological Diseases: Focus on Peripheral Pain and TRP Channels

Author(s): Mustafa Nazıroğlu*, Ahmi Öz and Kenan Yıldızhan

Volume 18, Issue 6, 2020

Page: [501 - 517] Pages: 17

DOI: 10.2174/1570159X18666200106152631

Price: $65

Abstract

Pain is a complex physiological process that includes many components. Growing evidence supports the idea that oxidative stress and Ca2+ signaling pathways participate in pain detection by neurons. The main source of endogenous reactive oxygen species (ROS) is mitochondrial dysfunction induced by membrane depolarization, which is in turn caused by Ca2+ influx into the cytosol of neurons. ROS are controlled by antioxidants, including selenium. Selenium plays an important role in the nervous system, including the brain, where it acts as a cofactor for glutathione peroxidase and is incorporated into selenoproteins involved in antioxidant defenses. It has neuroprotective effects through modulation of excessive ROS production, inflammation, and Ca2+ overload in several diseases, including inflammatory pain, hypersensitivity, allodynia, diabetic neuropathic pain, and nociceptive pain. Ca2+ entry across membranes is mediated by different channels, including transient receptor potential (TRP) channels, some of which (e.g., TRPA1, TRPM2, TRPV1, and TRPV4) can be activated by oxidative stress and have a role in the induction of peripheral pain. The results of recent studies indicate the modulator roles of selenium in peripheral pain through inhibition of TRP channels in the dorsal root ganglia of experimental animals. This review summarizes the protective role of selenium in TRP channel regulation, Ca2+ signaling, apoptosis, and mitochondrial oxidative stress in peripheral pain induction.

Keywords: Calcium ion, neurological diseases, oxidative stress, peripheral pain, TRP channels, selenium.

Graphical Abstract
[1]
Little, J.W.; Doyle, T.; Salvemini, D. Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids, 2012, 42(1), 75-94.
[http://dx.doi.org/10.1007/s00726-010-0633-0] [PMID: 20552384]
[2]
Bourinet, E.; Altier, C.; Hildebrand, M.E.; Trang, T.; Salter, M.W.; Zamponi, G.W. Calcium-permeable ion channels in pain signaling. Physiol. Rev., 2014, 94(1), 81-140.
[http://dx.doi.org/10.1152/physrev.00023.2013] [PMID: 24382884]
[3]
Shimizu, S.; Takahashi, N.; Mori, Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb. Exp. Pharmacol., 2014, 223, 767-794.
[http://dx.doi.org/10.1007/978-3-319-05161-1_3] [PMID: 24961969]
[4]
Ibi, M.; Matsuno, K.; Shiba, D.; Katsuyama, M.; Iwata, K.; Kakehi, T.; Nakagawa, T.; Sango, K.; Shirai, Y.; Yokoyama, T.; Kaneko, S.; Saito, N.; Yabe-Nishimura, C. Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J. Neurosci., 2008, 28(38), 9486-9494.
[http://dx.doi.org/10.1523/JNEUROSCI.1857-08.2008] [PMID: 18799680]
[5]
Esposito, E.; Paterniti, I.; Mazzon, E.; Bramanti, P.; Cuzzocrea, S. Melatonin reduces hyperalgesia associated with inflammation. J. Pineal Res., 2010, 49(4), 321-331.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00796.x] [PMID: 20666977]
[6]
Khattab, M.M. TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur. J. Pharmacol., 2006, 548(1-3), 167-173.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.007] [PMID: 16973155]
[7]
Kallenborn-Gerhardt, W.; Lu, R.; Syhr, K.M.; Heidler, J.; von Melchner, H.; Geisslinger, G.; Bangsow, T.; Schmidtko, A. Antioxidant activity of sestrin 2 controls neuropathic pain after peripheral nerve injury. Antioxid. Redox Signal., 2013, 19(17), 2013-2023.
[http://dx.doi.org/10.1089/ars.2012.4958] [PMID: 23495831]
[8]
Diniz, D.M.; de Souza, A.H.; Pereira, E.M.; da Silva, J.F.; Rigo, F.K.; Romano-Silva, M.A.; Binda, N.; Castro, C.J., Jr; Cordeiro, M.N.; Ferreira, J.; Gomez, M.V. Effects of the calcium channel blockers Phα1β and ω-conotoxin MVIIA on capsaicin and acetic acid-induced visceral nociception in mice. Pharmacol. Biochem. Behav., 2014, 126, 97-102.
[http://dx.doi.org/10.1016/j.pbb.2014.09.017] [PMID: 25268314]
[9]
Reuler, J.B.; Girard, D.E.; Nardone, D.A. The chronic pain syndrome: misconceptions and management. Ann. Intern. Med., 1980, 93(4), 588-596.
[http://dx.doi.org/10.7326/0003-4819-93-4-588] [PMID: 6969053]
[10]
Falk, S.; Dickenson, A.H. Pain and nociception: mechanisms of cancer-induced bone pain. J. Clin. Oncol., 2014, 32(16), 1647-1654.
[http://dx.doi.org/10.1200/JCO.2013.51.7219] [PMID: 24799469]
[11]
Dubin, A.E.; Patapoutian, A. Nociceptors: the sensors of the pain pathway. J. Clin. Invest., 2010, 120(11), 3760-3772.
[http://dx.doi.org/10.1172/JCI42843] [PMID: 21041958]
[12]
Baron, R. Neuropathic pain: a clinical perspective. Handb. Exp. Pharmacol., 2009, (194), 3-30.
[http://dx.doi.org/10.1007/978-3-540-79090-7_1] [PMID: 19655103]
[13]
Carrasco, C.; Naziroǧlu, M.; Rodríguez, A.B.; Pariente, J.A. Neuropathic pain: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front. Physiol., 2018, 9, 95.
[http://dx.doi.org/10.3389/fphys.2018.00095] [PMID: 29491840]
[14]
Jang, Y.; Cho, P.S.; Yang, Y.D.; Hwang, S.W. Nociceptive Roles of TRPM2 Ion Channel in Pathologic Pain. Mol. Neurobiol., 2018, 55(8), 6589-6600.
[http://dx.doi.org/10.1007/s12035-017-0862-2] [PMID: 29327205]
[15]
Naziroğlu, M. New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem. Res., 2007, 32(11), 1990-2001.
[http://dx.doi.org/10.1007/s11064-007-9386-x] [PMID: 17562166]
[16]
Nazıroglu, M. Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem. Res., 2009, 34(12), 2181-2191.
[http://dx.doi.org/10.1007/s11064-009-0015-8] [PMID: 19513830]
[17]
Pickering, G.; Morel, V. Memantine for the treatment of general neuropathic pain: a narrative review. Fundam. Clin. Pharmacol., 2018, 32(1), 4-13.
[http://dx.doi.org/10.1111/fcp.12316] [PMID: 28802070]
[18]
Brefel-Courbon, C.; Ory-Magne, F.; Thalamas, C.; Payoux, P.; Rascol, O. Nociceptive brain activation in patients with neuropathic pain related to Parkinson’s disease. Parkinsonism Relat. Disord., 2013, 19(5), 548-552.
[http://dx.doi.org/10.1016/j.parkreldis.2013.02.003] [PMID: 23462484]
[19]
Kahya, M.C.; Nazıroğlu, M.; Övey, I.S. Modulation of diabetes-induced oxidative stress, apoptosis, and ca2+ entry through trpm2 and trpv1 channels in dorsal root ganglion and hippocampus of diabetic rats by melatonin and selenium. Mol. Neurobiol., 2017, 54(3), 2345-2360.
[http://dx.doi.org/10.1007/s12035-016-9727-3] [PMID: 26957303]
[20]
Mickle, A.D.; Shepherd, A.J.; Mohapatra, D.P. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals (Basel), 2016, 9(4), 72.
[http://dx.doi.org/10.3390/ph9040072] [PMID: 27854251]
[21]
Gonzalez-Ramirez, R.; Chen, Y.; Liedtke, W.B.; Morales-Lazaro, S.L. TRP channels and pain. Neurobiology of trp channels, nd; Emir, T.L.R., Ed.; Boca Raton, FL, 2017, pp. 125-147
[http://dx.doi.org/10.4324/9781315152837-8]
[22]
Kobayashi, K.; Fukuoka, T.; Obata, K.; Yamanaka, H.; Dai, Y.; Tokunaga, A.; Noguchi, K. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J. Comp. Neurol., 2005, 493(4), 596-606.
[http://dx.doi.org/10.1002/cne.20794] [PMID: 16304633]
[23]
Ji, G.; Zhou, S.; Carlton, S.M. Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience, 2008, 154(3), 1054-1066.
[http://dx.doi.org/10.1016/j.neuroscience.2008.04.039] [PMID: 18514429]
[24]
Sasaki, A.; Mizoguchi, S.; Kagaya, K.; Shiro, M.; Sakai, A.; Andoh, T.; Kino, Y.; Taniguchi, H.; Saito, Y.; Takahata, H.; Kuraishi, Y. A mouse model of peripheral postischemic dysesthesia: involvement of reperfusion-induced oxidative stress and TRPA1 channel. J. Pharmacol. Exp. Ther., 2014, 351(3), 568-575.
[http://dx.doi.org/10.1124/jpet.114.217570] [PMID: 25228635]
[25]
Klein, A.H.; Trannyguen, M.; Joe, C.L.; Iodi, C.M.; Carstens, E. Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models. Chemosens. Percept., 2015, 8(2), 96-108.
[http://dx.doi.org/10.1007/s12078-015-9176-9] [PMID: 26388966]
[26]
Sałat, K.; Filipek, B. Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice. J. Zhejiang Univ. Sci. B, 2015, 16(3), 167-178.
[http://dx.doi.org/10.1631/jzus.B1400189] [PMID: 25743118]
[27]
Wick, E.C.; Hoge, S.G.; Grahn, S.W.; Kim, E.; Divino, L.A.; Grady, E.F.; Bunnett, N.W.; Kirkwood, K.S. Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(5), G959-G969.
[http://dx.doi.org/10.1152/ajpgi.00154.2005] [PMID: 16399878]
[28]
Engel, M.A.; Leffler, A.; Niedermirtl, F.; Babes, A.; Zimmermann, K.; Filipović, M.R.; Izydorczyk, I.; Eberhardt, M.; Kichko, T.I.; Mueller-Tribbensee, S.M.; Khalil, M.; Siklosi, N.; Nau, C.; Ivanović-Burmazović, I.; Neuhuber, W.L.; Becker, C.; Neurath, M.F.; Reeh, P.W. TRPA1 and substance P mediate colitis in mice. Gastroenterology, 2011, 141(4), 1346-1358.
[http://dx.doi.org/10.1053/j.gastro.2011.07.002] [PMID: 21763243]
[29]
Pozsgai, G.; Hajna, Z.; Bagoly, T.; Boros, M.; Kemény, Á.; Materazzi, S.; Nassini, R.; Helyes, Z.; Szolcsányi, J.; Pintér, E. The role of transient receptor potential ankyrin 1 (TRPA1) receptor activation in hydrogen-sulphide-induced CGRP-release and vasodilation. Eur. J. Pharmacol., 2012, 689(1-3), 56-64.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.053] [PMID: 22721614]
[30]
Denner, A.C.; Vogler, B.; Messlinger, K.; De Col, R. Role of transient receptor potential ankyrin 1 receptors in rodent models of meningeal nociception - Experiments in vitro. Eur. J. Pain, 2017, 21(5), 843-854.
[http://dx.doi.org/10.1002/ejp.986] [PMID: 27977070]
[31]
Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin., 2007, 45(2), 27-37.
[http://dx.doi.org/10.1097/AIA.0b013e318034194e] [PMID: 17426506]
[32]
Rahman, W.; Dickenson, A.H. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci. Lett., 2013, 557( Pt A), 19-26.
[http://dx.doi.org/10.1016/j.neulet.2013.08.004]
[33]
Gwanyanya, A.; Macianskiene, R.; Mubagwa, K. Insights into the effects of diclofenac and other non-steroidal anti-inflammatory agents on ion channels. J. Pharm. Pharmacol., 2012, 64(10), 1359-1375.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01479.x] [PMID: 22943167]
[34]
Holzer, P.; Izzo, A.A. The pharmacology of TRP channels. Br. J. Pharmacol., 2014, 171(10), 2469-2473.
[http://dx.doi.org/10.1111/bph.12723] [PMID: 24773265]
[35]
Mori, Y.; Takahashi, N.; Polat, O.K.; Kurokawa, T.; Takeda, N.; Inoue, M. Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation. Pflugers Arch., 2016, 468(1), 85-97.
[http://dx.doi.org/10.1007/s00424-015-1716-2] [PMID: 26149285]
[36]
Takahashi, N.; Mori, Y. TRP Channels as Sensors and Signal Integrators of Redox Status Changes. Front. Pharmacol., 2011, 2, 58.
[http://dx.doi.org/10.3389/fphar.2011.00058] [PMID: 22016736]
[37]
Yüksel, E.; Nazıroğlu, M.; Şahin, M.; Çiğ, B. Involvement of TRPM2 and TRPV1 channels on hyperalgesia, apoptosis and oxidative stress in rat fibromyalgia model: Protective role of selenium. Sci. Rep., 2017, 7(1), 17543.
[http://dx.doi.org/10.1038/s41598-017-17715-1] [PMID: 29235496]
[38]
Pillai, R.; Uyehara-Lock, J.H.; Bellinger, F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life, 2014, 66(4), 229-239.
[http://dx.doi.org/10.1002/iub.1262] [PMID: 24668686]
[39]
Kim, S.; Park, S.E.; Sapkota, K.; Kim, M.K.; Kim, S.J. Leaf extract of Rhus verniciflua Stokes protects dopaminergic neuronal cells in a rotenone model of Parkinson’s disease. J. Pharm. Pharmacol., 2011, 63(10), 1358-1367.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01342.x] [PMID: 21899552]
[40]
Nazıroğlu, M.; Muhamad, S.; Pecze, L. Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert Rev. Clin. Pharmacol., 2017, 10(7), 773-782.
[http://dx.doi.org/10.1080/17512433.2017.1324781] [PMID: 28463572]
[41]
Verkhratsky, A.J.; Petersen, O.H. Neuronal calcium stores. Cell Calcium, 1998, 24(5-6), 333-343.
[http://dx.doi.org/10.1016/S0143-4160(98)90057-4] [PMID: 10091003]
[42]
Mata, A.; Marques, D.; Martínez-Burgos, M.A.; Silveira, J.; Marques, J.; Mesquita, M.F.; Pariente, J.A.; Salido, G.M.; Singh, J. Effect of hydrogen peroxide on secretory response, calcium mobilisation and caspase-3 activity in the isolated rat parotid gland. Mol. Cell. Biochem., 2008, 319(1-2), 23-31.
[http://dx.doi.org/10.1007/s11010-008-9873-7] [PMID: 18704645]
[43]
González, D.; Espino, J.; Bejarano, I.; López, J.J.; Rodríguez, A.B.; Pariente, J.A. Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol. Cell. Biochem., 2010, 333(1-2), 151-157.
[http://dx.doi.org/10.1007/s11010-009-0215-1] [PMID: 19626422]
[44]
Bejarano, I.; Espino, J.; González-Flores, D.; Casado, J.G.; Redondo, P.C.; Rosado, J.A.; Barriga, C.; Pariente, J.A.; Rodríguez, A.B. Role of Calcium Signals on Hydrogen Peroxide-Induced Apoptosis in Human Myeloid HL-60 Cells. Int. J. Biomed. Sci., 2009, 5(3), 246-256.
[PMID: 23675144]
[45]
Ureshino, R.P.; Hsu, Y.T.; do Carmo, L.G.; Yokomizo, C.H.; Nantes, I.L.; Smaili, S.S. Inhibition of cytoplasmic p53 differentially modulates Ca(2+) signaling and cellular viability in young and aged striata. Exp. Gerontol., 2014, 58, 120-127.
[http://dx.doi.org/10.1016/j.exger.2014.07.014] [PMID: 25084214]
[46]
Berridge, M.J. The Inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev., 2016, 96(4), 1261-1296.
[http://dx.doi.org/10.1152/physrev.00006.2016] [PMID: 27512009]
[47]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev., 2016, 20161245049
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[48]
Hecquet, C.M.; Malik, A.B. Role of H(2)O(2)-activated TRPM2 calcium channel in oxidant-induced endothelial injury. Thromb. Haemost., 2009, 101(4), 619-625.
[http://dx.doi.org/10.1160/TH08-10-0641] [PMID: 19350103]
[49]
Gómez-Gonzalo, M.; Martin-Fernandez, M.; Martínez-Murillo, R.; Mederos, S.; Hernández-Vivanco, A.; Jamison, S.; Fernandez, A.P.; Serrano, J.; Calero, P.; Futch, H.S.; Corpas, R.; Sanfeliu, C.; Perea, G.; Araque, A. Neuron-astrocyte signaling is preserved in the aging brain. Glia, 2017, 65(4), 569-580.
[http://dx.doi.org/10.1002/glia.23112] [PMID: 28130845]
[50]
Bianchi, K.; Rimessi, A.; Prandini, A.; Szabadkai, G.; Rizzuto, R. Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim. Biophys. Acta, 2004, 1742(1-3), 119-131.
[http://dx.doi.org/10.1016/j.bbamcr.2004.09.015] [PMID: 15590062]
[51]
Arruda, A.P.; Hotamisligil, G.S. Calcium Homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab., 2015, 22(3), 381-397.
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[52]
Díaz-Vegas, A.R.; Cordova, A.; Valladares, D.; Llanos, P.; Hidalgo, C.; Gherardi, G.; De Stefani, D.; Mammucari, C.; Rizzuto, R.; Contreras-Ferrat, A.; Jaimovich, E. Mitochondrial calcium increase induced by ryr1 and ip3r channel activation after membrane depolarization regulates skeletal muscle metabolism. Front. Physiol., 2018, 9, 791.
[http://dx.doi.org/10.3389/fphys.2018.00791] [PMID: 29988564]
[53]
Hajnóczky, G.; Csordás, G.; Das, S.; Garcia-Perez, C.; Saotome, M.; Sinha Roy, S.; Yi, M. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium, 2006, 40(5-6), 553-560.
[http://dx.doi.org/10.1016/j.ceca.2006.08.016] [PMID: 17074387]
[54]
Skrzypski, M.; Sassek, M.; Abdelmessih, S.; Mergler, S.; Grötzinger, C.; Metzke, D.; Wojciechowicz, T.; Nowak, K.W.; Strowski, M.Z. Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action. Cell. Signal., 2014, 26(1), 41-48.
[http://dx.doi.org/10.1016/j.cellsig.2013.09.014] [PMID: 24075930]
[55]
Uğuz, A.C.; Öz, A.; Nazıroğlu, M. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells. J. Recept. Signal Transduct. Res., 2016, 36(4), 395-401.
[http://dx.doi.org/10.3109/10799893.2015.1108337] [PMID: 26608462]
[56]
Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[57]
Yakubov, E.; Buchfelder, M.; Eyüpoglu, I.Y.; Savaskan, N.E. Selenium action in neuro-oncology. Biol. Trace Elem. Res., 2014, 161(3), 246-254.
[http://dx.doi.org/10.1007/s12011-014-0111-8] [PMID: 25164034]
[58]
Nazıroğlu, M.; Yıldız, K.; Tamtürk, B.; Erturan, İ.; Flores-Arce, M. Selenium and psoriasis. Biol. Trace Elem. Res., 2012, 150(1-3), 3-9.
[http://dx.doi.org/10.1007/s12011-012-9479-5] [PMID: 22821504]
[59]
Bai, K.; Hong, B.; Hong, Z.; Sun, J.; Wang, C. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in D-galactose-induced aging mice. J. Nanobiotechnology, 2017, 15(1), 92.
[http://dx.doi.org/10.1186/s12951-017-0324-z] [PMID: 29262862]
[60]
Huang, B.; Zhang, J.; Hou, J.; Chen, C. Free radical scavenging efficiency of Nano-Se in vitro. Free Radic. Biol. Med., 2003, 35(7), 805-813.
[http://dx.doi.org/10.1016/S0891-5849(03)00428-3] [PMID: 14583345]
[61]
Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: a review. Sci. Total Environ., 2008, 400(1-3), 115-141.
[http://dx.doi.org/10.1016/j.scitotenv.2008.06.024] [PMID: 18657851]
[62]
Flockerzi, V. An introduction on TRP channels. Handb. Exp. Pharmacol., 2007, 179, 1-19.
[PMID: 17217048]
[63]
Pingle, S.C.; Matta, J.A.; Ahern, G.P. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb. Exp. Pharmacol., 2007, 179, 155-171.
[http://dx.doi.org/10.1007/978-3-540-34891-7_9] [PMID: 17217056]
[64]
Demirdaş, A.; Nazıroğlu, M.; Övey, I.S. Duloxetine reduces oxidative stress, apoptosis, and ca2+ entry through modulation of trpm2 and trpv1 channels in the hippocampus and dorsal root ganglion of rats. Mol. Neurobiol., 2017, 54(6), 4683-4695.
[http://dx.doi.org/10.1007/s12035-016-9992-1] [PMID: 27443158]
[65]
Nazıroğlu, M.; Braidy, N. Thermo-sensitive trp channels: novel targets for treating chemotherapy-induced peripheral pain. Front. Physiol., 2017, 8, 1040.
[http://dx.doi.org/10.3389/fphys.2017.01040] [PMID: 29326595]
[66]
Bräuer, A.U.; Savaskan, N.E. Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element. Rev. Neurosci., 2004, 15(1), 19-32.
[http://dx.doi.org/10.1515/REVNEURO.2004.15.1.19] [PMID: 15046197]
[67]
Nazıroğlu, M.; Çelik, Ö.; Uğuz, A.C.; Bütün, A. Protective effects of riboflavin and selenium on brain microsomal Ca2+-ATPase and oxidative damage caused by glyceryl trinitrate in a rat headache model. Biol. Trace Elem. Res., 2015, 164(1), 72-79.
[http://dx.doi.org/10.1007/s12011-014-0199-x] [PMID: 25492827]
[68]
Wilhelm, E.A.; Ferreira, A.T.; Pinz, M.P.; Reis, A.S.D.; Vogt, A.G.; Stein, A.L.; Zeni, G.; Luchese, C. Antioxidant effect of quinoline derivatives containing or not selenium: Relationship with antinociceptive action quinolines are antioxidant and antinociceptive. An. Acad. Bras. Cienc., 2017, 89(1)(Suppl.), 457-467.
[http://dx.doi.org/10.1590/0001-3765201720160668] [PMID: 28538816]
[69]
Solovyev, N.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J. Inorg. Biochem., 2015, 153, 1-12.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.09.003] [PMID: 26398431]
[70]
Naziroğlu, M.; Lückhoff, A. Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J. Neurol. Sci., 2008, 270(1-2), 152-158.
[http://dx.doi.org/10.1016/j.jns.2008.03.003] [PMID: 18442831]
[71]
Crouzin, N.; Ferreira, M.C.; Cohen-Solal, C.; Barbanel, G.; Guiramand, J.; Vignes, M. Neuroprotection induced by vitamin E against oxidative stress in hippocampal neurons: involvement of TRPV1 channels. Mol. Nutr. Food Res., 2010, 54(4), 496-505.
[http://dx.doi.org/10.1002/mnfr.200900188] [PMID: 20087852]
[72]
Nazıroğlu, M.; Ciğ, B.; Ozgül, C. Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels. Neuroscience, 2013, 242, 151-160.
[http://dx.doi.org/10.1016/j.neuroscience.2013.03.032] [PMID: 23545271]
[73]
Celik, O.; Nazıroğlu, M. Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol. Behav., 2012, 107(3), 458-465.
[http://dx.doi.org/10.1016/j.physbeh.2012.09.013] [PMID: 23041488]
[74]
Nazıroğlu, M.; Özgül, C.; Küçükayaz, M.; Çiğ, B.; Hebeisen, S.; Bal, R. Selenium modulates oxidative stress-induced TRPM2 cation channel currents in transfected Chinese hamster ovary cells. Basic Clin. Pharmacol. Toxicol., 2013, 112(2), 96-102.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00934.x] [PMID: 22905852]
[75]
Sözbir, E.; Nazıroğlu, M. Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab. Brain Dis., 2016, 31(2), 385-393.
[http://dx.doi.org/10.1007/s11011-015-9769-7] [PMID: 26612073]
[76]
Öz, A.; Çelik, Ö. Curcumin inhibits oxidative stress-induced TRPM2 channel activation, calcium ion entry and apoptosis values in SH-SY5Y neuroblastoma cells: Involvement of transfection procedure. Mol. Membr. Biol., 2016, 33(3-5), 76-88.
[http://dx.doi.org/10.1080/09687688.2017.1318224] [PMID: 28569571]
[77]
Zayats, V.; Samad, A.; Minofar, B.; Roelofs, K.E.; Stockner, T.; Ettrich, R. Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J. Mol. Model., 2013, 19(11), 4689-4700.
[http://dx.doi.org/10.1007/s00894-012-1505-1] [PMID: 22752543]
[78]
Cordero-Morales, J.F.; Gracheva, E.O.; Julius, D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl. Acad. Sci. USA, 2011, 108(46), E1184-E1191.
[http://dx.doi.org/10.1073/pnas.1114124108] [PMID: 21930928]
[79]
Clapham, D.E. SnapShot: mammalian TRP channels. Cell, 2007, 129(1), 220.
[http://dx.doi.org/10.1016/j.cell.2007.03.034] [PMID: 17418797]
[80]
Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci., 2008, 28(10), 2485-2494.
[http://dx.doi.org/10.1523/JNEUROSCI.5369-07.2008] [PMID: 18322093]
[81]
Baraldi, P.G.; Preti, D.; Materazzi, S.; Geppetti, P. Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J. Med. Chem., 2010, 53(14), 5085-5107.
[http://dx.doi.org/10.1021/jm100062h] [PMID: 20356305]
[82]
Marwaha, L.; Bansal, Y.; Singh, R.; Saroj, P.; Bhandari, R.; Kuhad, A. TRP channels: potential drug target for neuropathic pain. Inflammopharmacology, 2016, 24(6), 305-317.
[http://dx.doi.org/10.1007/s10787-016-0288-x] [PMID: 27757589]
[83]
Yu, L.; Wang, S.; Kogure, Y.; Yamamoto, S.; Noguchi, K.; Dai, Y. Modulation of TRP channels by resveratrol and other stilbenoids. Mol. Pain, 2013, 9, 3.
[http://dx.doi.org/10.1186/1744-8069-9-3] [PMID: 23413875]
[84]
Nassini, R.; Materazzi, S.; Benemei, S.; Geppetti, P. The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev. Physiol. Biochem. Pharmacol., 2014, 167, 1-43.
[http://dx.doi.org/10.1007/112_2014_18] [PMID: 24668446]
[85]
Kwan, K.Y.; Allchorne, A.J.; Vollrath, M.A.; Christensen, A.P.; Zhang, D.S.; Woolf, C.J.; Corey, D.P. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron, 2006, 50(2), 277-289.
[http://dx.doi.org/10.1016/j.neuron.2006.03.042] [PMID: 16630838]
[86]
Trevisan, G.; Materazzi, S.; Fusi, C.; Altomare, A.; Aldini, G.; Lodovici, M.; Patacchini, R.; Geppetti, P.; Nassini, R. Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res., 2013, 73(10), 3120-3131.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4370] [PMID: 23477783]
[87]
Stenger, B.; Popp, T.; John, H.; Siegert, M.; Tsoutsoulopoulos, A.; Schmidt, A.; Mückter, H.; Gudermann, T.; Thiermann, H.; Steinritz, D. N-Acetyl-L-cysteine inhibits sulfur mustard-induced and TRPA1-dependent calcium influx. Arch. Toxicol., 2017, 91(5), 2179-2189.
[http://dx.doi.org/10.1007/s00204-016-1873-x] [PMID: 27738742]
[88]
Yazğan, Y.; Nazıroğlu, M. Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through trpa1, trpm2, and trpv1 are prevented by 17β-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol. Neurobiol., 2017, 54(10), 7620-7638.
[http://dx.doi.org/10.1007/s12035-016-0232-5] [PMID: 27832523]
[89]
Pérez de Vega, M.J.; Gómez-Monterrey, I.; Ferrer-Montiel, A.; González-Muñiz, R. Transient receptor potential melastatin 8 channel (trpm8) modulation: cool entryway for treating pain and cancer. J. Med. Chem., 2016, 59(22), 10006-10029.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00305] [PMID: 27437828]
[90]
DeFalco, J.; Steiger, D.; Dourado, M.; Emerling, D.; Duncton, M.A. 5-benzyloxytryptamine as an antagonist of TRPM8. Bioorg. Med. Chem. Lett., 2010, 20(23), 7076-7079.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.099] [PMID: 20965726]
[91]
Block, C.H.; Hoffman, G.E. Neuropeptide and monoamine components of the parabrachial pontine complex. Peptides, 1987, 8(2), 267-283.
[http://dx.doi.org/10.1016/0196-9781(87)90102-1] [PMID: 2884646]
[92]
Dhaka, A.; Murray, A.N.; Mathur, J.; Earley, T.J.; Petrus, M.J.; Patapoutian, A. TRPM8 is required for cold sensation in mice. Neuron, 2007, 54(3), 371-378.
[http://dx.doi.org/10.1016/j.neuron.2007.02.024] [PMID: 17481391]
[93]
Broad, L.M.; Mogg, A.J.; Beattie, R.E.; Ogden, A.M.; Blanco, M.J.; Bleakman, D. TRP channels as emerging targets for pain therapeutics. Expert Opin. Ther. Targets, 2009, 13(1), 69-81.
[http://dx.doi.org/10.1517/14728220802616620] [PMID: 19063707]
[94]
Naziroğlu, M.; Ozgül, C. Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol. Neurochem. Res., 2012, 37(2), 314-320.
[http://dx.doi.org/10.1007/s11064-011-0614-z] [PMID: 21964764]
[95]
Su, L.; Shu, R.; Song, C.; Yu, Y.; Wang, G.; Li, Y.; Liu, C. Downregulations of TRPM8 expression and membrane trafficking in dorsal root ganglion mediate the attenuation of cold hyperalgesia in CCI rats induced by GFRα3 knockdown. Brain Res. Bull., 2017, 135, 8-24.
[http://dx.doi.org/10.1016/j.brainresbull.2017.08.002] [PMID: 28867384]
[96]
Gong, K.; Jasmin, L. Sustained Morphine Administration Induces TRPM8-Dependent Cold Hyperalgesia. J. Pain, 2017, 18(2), 212-221.
[http://dx.doi.org/10.1016/j.jpain.2016.10.015] [PMID: 27845197]
[97]
Pan, Y.; Chen, F.; Huang, S.; Cai, Z.; Lan, H.; Tong, Y.; Yu, X.; Zhao, G. TRPA1 and TRPM8 receptors may promote local vasodilation that aggravates oxaliplatin-induced peripheral neuropathy amenable to 17β-estradiol treatment. Curr. Neurovasc. Res., 2016, 13(4), 309-317.
[http://dx.doi.org/10.2174/1567202613666160601144254] [PMID: 27262300]
[98]
Kato, Y.; Tateai, Y.; Ohkubo, M.; Saito, Y.; Amagai, S.Y.; Kimura, Y.S.; Iimura, N.; Okada, M.; Matsumoto, A.; Mano, Y.; Hirosawa, I.; Ohuchi, K.; Tajima, M.; Asahi, M.; Kotaki, H.; Yamada, H. CKato Gosha-jinki-gan reduced oxaliplatin-induced hypersensitivity to cold sensation and its effect would be related to suppression of the expression of TRPM8 and TRPA1 in rats. Anticancer Drugs, 2014, 25(1), 39-43.
[http://dx.doi.org/10.1097/CAD.0000000000000022] [PMID: 24052105]
[99]
Caceres, A.I.; Liu, B.; Jabba, S.V.; Achanta, S.; Morris, J.B.; Jordt, S.E. Transient Receptor Potential Cation Channel Subfamily M Member 8 channels mediate the anti-inflammatory effects of eucalyptol. Br. J. Pharmacol., 2017, 174(9), 867-879.
[http://dx.doi.org/10.1111/bph.13760] [PMID: 28240768]
[100]
Dussor, G.; Cao, Y.Q. TRPM8 and Migraine. Headache, 2016, 56(9), 1406-1417.
[http://dx.doi.org/10.1111/head.12948] [PMID: 27634619]
[101]
Hsieh, Y.L.; Chen, H.Y.; Yang, C.H.; Yang, C.C. Analgesic effects of transcutaneous ultrasound nerve stimulation in a rat model of oxaliplatin-induced mechanical hyperalgesia and cold allodynia. Ultrasound Med. Biol., 2017, 43(7), 1466-1475.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2017.03.002] [PMID: 28433438]
[102]
Lishko, P.V.; Procko, E.; Jin, X.; Phelps, C.B.; Gaudet, R. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron, 2007, 54(6), 905-918.
[http://dx.doi.org/10.1016/j.neuron.2007.05.027] [PMID: 17582331]
[103]
Nazıroğlu, M. Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J. Recept. Signal Transduct. Res., 2012, 32(3), 134-141.
[http://dx.doi.org/10.3109/10799893.2012.672994] [PMID: 22475023]
[104]
Kurogi, M.; Kawai, Y.; Nagatomo, K.; Tateyama, M.; Kubo, Y.; Saitoh, O. Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chem. Senses, 2015, 40(1), 27-46.
[http://dx.doi.org/10.1093/chemse/bju057] [PMID: 25422365]
[105]
Bevan, S.; Quallo, T.; Andersson, D.A. Trpv1. Handb. Exp. Pharmacol., 2014, 222, 207-245.
[http://dx.doi.org/10.1007/978-3-642-54215-2_9] [PMID: 24756708]
[106]
Edwards, J.G. TRPV1 in the central nervous system: synaptic plasticity, function, and pharmacological implications. Prog. Drug Res., 2014, 68, 77-104.
[http://dx.doi.org/10.1007/978-3-0348-0828-6_3] [PMID: 24941665]
[107]
Danigo, A.; Magy, L.; Demiot, C. TRPV1 in neuropathic pain: from animal models to therapeutical prospects. Med. Sci. (Paris), 2013, 29(6-7), 597-606.,
[http://dx.doi.org/10.1051/medsci/2013296012 ] [PMID: 23859514]
[108]
Rossato, M.F.; Trevisan, G.; Walker, C.I.; Klafke, J.Z.; de Oliveira, A.P.; Villarinho, J.G.; Zanon, R.B.; Royes, L.F.; Athayde, M.L.; Gomez, M.V.; Ferreira, J. Eriodictyol: a flavonoid antagonist of the TRPV1 receptor with antioxidant activity. Biochem. Pharmacol., 2011, 81(4), 544-551.
[http://dx.doi.org/10.1016/j.bcp.2010.11.004] [PMID: 21087598]
[109]
Pabbidi, R.M.; Yu, S.Q.; Peng, S.; Khardori, R.; Pauza, M.E.; Premkumar, L.S. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol. Pain, 2008, 4, 9.
[http://dx.doi.org/10.1186/1744-8069-4-9] [PMID: 18312687]
[110]
Wilder-Smith, E.P.; Ong, W.Y.; Guo, Y.; Chow, A.W. Epidermal transient receptor potential vanilloid 1 in idiopathic small nerve fibre disease, diabetic neuropathy and healthy human subjects. Histopathology, 2007, 51(5), 674-680.
[http://dx.doi.org/10.1111/j.1365-2559.2007.02851.x] [PMID: 17927589]
[111]
Gouin, O.; L’Herondelle, K.; Lebonvallet, N.; Le Gall-Ianotto, C.; Sakka, M.; Buhé, V.; Plée-Gautier, E.; Carré, J.L.; Lefeuvre, L.; Misery, L.; Le Garrec, R. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell, 2017, 8(9), 644-661.
[http://dx.doi.org/10.1007/s13238-017-0395-5] [PMID: 28364279]
[112]
Wang, Y.; Gao, Y.; Tian, Q.; Deng, Q.; Wang, Y.; Zhou, T.; Liu, Q.; Mei, K.; Wang, Y.; Liu, H.; Ma, R.; Ding, Y.; Rong, W.; Cheng, J.; Yao, J.; Xu, T.L.; Zhu, M.X.; Li, Y. TRPV1 SUMOylation regulates nociceptive signaling in models of inflammatory pain. Nat. Commun., 2018, 9(1), 1529.
[http://dx.doi.org/10.1038/s41467-018-03974-7] [PMID: 29670121]
[113]
Ji, R.R.; Samad, T.A.; Jin, S.X.; Schmoll, R.; Woolf, C.J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron, 2002, 36(1), 57-68.
[http://dx.doi.org/10.1016/S0896-6273(02)00908-X] [PMID: 12367506]
[114]
Maqboul, A.; Elsadek, B. Expression profiles of TRPV1, TRPV4, TLR4 and ERK1/2 in the dorsal root ganglionic neurons of a cancer-induced neuropathy rat model. PeerJ, 2018, 6e4622
[http://dx.doi.org/10.7717/peerj.4622] [PMID: 29637027]
[115]
Sakallı Çetin, E.; Nazıroğlu, M.; Çiğ, B.; Övey, I.S.; Aslan Koşar, P. Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel. J. Recept. Signal Transduct. Res., 2017, 37(1), 84-93.
[http://dx.doi.org/10.3109/10799893.2016.1160931] [PMID: 27055401]
[116]
Koşar, P.A.; Nazıroğlu, M.; Övey, I.S.; Çiğ, B. Synergic effects of doxorubicin and melatonin on apoptosis and mitochondrial oxidative stress in mcf-7 breast cancer cells: involvement of trpv1 channels. J. Membr. Biol., 2016, 249(1-2), 129-140.
[http://dx.doi.org/10.1007/s00232-015-9855-0] [PMID: 26525975]
[117]
Balaban, H.; Nazıroğlu, M.; Demirci, K.; Övey, I.S. The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of trpm2 and trpv1 channels. Mol. Neurobiol., 2017, 54(4), 2852-2868.
[http://dx.doi.org/10.1007/s12035-016-9835-0] [PMID: 27021021]
[118]
Nazıroğlu, M.; Senol, N.; Ghazizadeh, V.; Yürüker, V. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell. Mol. Neurobiol., 2014, 34(6), 895-903.
[http://dx.doi.org/10.1007/s10571-014-0069-2] [PMID: 24842665]
[119]
Shibasaki, K. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J. Physiol. Sci., 2016, 66(5), 359-365.
[http://dx.doi.org/10.1007/s12576-016-0434-7] [PMID: 26841959]
[120]
Kojima, I.; Nagasawa, M. Trpv2. Handb. Exp. Pharmacol., 2014, 222, 247-272.
[http://dx.doi.org/10.1007/978-3-642-54215-2_10] [PMID: 24756709]
[121]
Axelsson, H.E.; Minde, J.K.; Sonesson, A.; Toolanen, G.; Högestätt, E.D.; Zygmunt, P.M. Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience, 2009, 162(4), 1322-1332.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.052] [PMID: 19482060]
[122]
Mihara, H.; Boudaka, A.; Shibasaki, K.; Yamanaka, A.; Sugiyama, T.; Tominaga, M. Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice. J. Neurosci., 2010, 30(49), 16536-16544.
[http://dx.doi.org/10.1523/JNEUROSCI.4426-10.2010] [PMID: 21147993]
[123]
Bang, S.; Kim, K.Y.; Yoo, S.; Lee, S.H.; Hwang, S.W. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci. Lett., 2007, 425(2), 120-125.
[http://dx.doi.org/10.1016/j.neulet.2007.08.035] [PMID: 17850966]
[124]
Park, D.J.; Kim, S.H.; Nah, S.S.; Lee, J.H.; Kim, S.K.; Lee, Y.A.; Hong, S.J.; Kim, H.S.; Lee, H.S.; Kim, H.A.; Joung, C.I.; Kim, S.H.; Lee, S.S. Polymorphisms of the TRPV2 and TRPV3 genes associated with fibromyalgia in a Korean population. Rheumatology (Oxford), 2016, 55(8), 1518-1527.
[http://dx.doi.org/10.1093/rheumatology/kew180] [PMID: 27079220]
[125]
Colton, C.K.; Zhu, M.X. 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb. Exp. Pharmacol., 2007, 179, 173-187.
[http://dx.doi.org/10.1007/978-3-540-34891-7_10] [PMID: 17217057]
[126]
Nilius, B.; Bíró, T. TRPV3: a ‘more than skinny’ channel. Exp. Dermatol., 2013, 22(7), 447-452.
[http://dx.doi.org/10.1111/exd.12163] [PMID: 23800054]
[127]
Guatteo, E.; Chung, K.K.; Bowala, T.K.; Bernardi, G.; Mercuri, N.B.; Lipski, J. Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels. J. Neurophysiol., 2005, 94(5), 3069-3080.
[http://dx.doi.org/10.1152/jn.00066.2005] [PMID: 16014800]
[128]
Huang, S.M.; Lee, H.; Chung, M.K.; Park, U.; Yu, Y.Y.; Bradshaw, H.B.; Coulombe, P.A.; Walker, J.M.; Caterina, M.J. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J. Neurosci., 2008, 28(51), 13727-13737.
[http://dx.doi.org/10.1523/JNEUROSCI.5741-07.2008] [PMID: 19091963]
[129]
Huang, S.M.; Li, X.; Yu, Y.; Wang, J.; Caterina, M.J. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol. Pain, 2011, 7, 37.
[http://dx.doi.org/10.1186/1744-8069-7-37] [PMID: 21586160]
[130]
Carreño, O.; Corominas, R.; Fernández-Morales, J.; Camiña, M.; Sobrido, M.J.; Fernández-Fernández, J.M.; Pozo-Rosich, P.; Cormand, B.; Macaya, A. SNP variants within the vanilloid TRPV1 and TRPV3 receptor genes are associated with migraine in the Spanish population. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2012, 159B(1), 94-103.
[http://dx.doi.org/10.1002/ajmg.b.32007] [PMID: 22162417]
[131]
Luo, J.; Hu, H. Thermally activated TRPV3 channels. Curr. Top. Membr., 2014, 74, 325-364.
[http://dx.doi.org/10.1016/B978-0-12-800181-3.00012-9] [PMID: 25366242]
[132]
Plant, T.D.; Strotmann, R. TRPV4: A Multifunctional Nonselective Cation Channel with Complex Regulation.TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades; Liedtke, W.B; Heller, S., Ed.; Boca Raton, FL, 2007.
[133]
Alessandri-Haber, N.; Yeh, J.J.; Boyd, A.E.; Parada, C.A.; Chen, X.; Reichling, D.B.; Levine, J.D. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron, 2003, 39(3), 497-511.
[http://dx.doi.org/10.1016/S0896-6273(03)00462-8] [PMID: 12895423]
[134]
Kumagami, H.; Terakado, M.; Sainoo, Y.; Baba, A.; Fujiyama, D.; Fukuda, T.; Takasaki, K.; Takahashi, H. Expression of the osmotically responsive cationic channel TRPV4 in the endolymphatic sac. Audiol. Neurotol., 2009, 14(3), 190-197.
[http://dx.doi.org/10.1159/000180290] [PMID: 19066426]
[135]
Zhang, L.P.; Kline, R.H., IV; Deevska, G.; Ma, F.; Nikolova-Karakashian, M.; Westlund, K.N. Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist reduces hypersensitivity. Neuroscience, 2015, 311, 166-179.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.028] [PMID: 26480812]
[136]
Vincent, F.; Acevedo, A.; Nguyen, M.T.; Dourado, M.; DeFalco, J.; Gustafson, A.; Spiro, P.; Emerling, D.E.; Kelly, M.G.; Duncton, M.A. Identification and characterization of novel TRPV4 modulators. Biochem. Biophys. Res. Commun., 2009, 389(3), 490-494.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.007] [PMID: 19737537]
[137]
Poole, D.P.; Amadesi, S.; Veldhuis, N.A.; Abogadie, F.C.; Lieu, T.; Darby, W.; Liedtke, W.; Lew, M.J.; McIntyre, P.; Bunnett, N.W. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J. Biol. Chem., 2013, 288(8), 5790-5802.
[http://dx.doi.org/10.1074/jbc.M112.438184] [PMID: 23288842]
[138]
Grace, M.S.; Lieu, T.; Darby, B.; Abogadie, F.C.; Veldhuis, N.; Bunnett, N.W.; McIntyre, P. The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo. Br. J. Pharmacol., 2014, 171(16), 3881-3894.
[http://dx.doi.org/10.1111/bph.12750] [PMID: 24779362]
[139]
Alessandri-Haber, N.; Dina, O.A.; Yeh, J.J.; Parada, C.A.; Reichling, D.B.; Levine, J.D. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci., 2004, 24(18), 4444-4452.
[http://dx.doi.org/10.1523/JNEUROSCI.0242-04.2004] [PMID: 15128858]
[140]
Materazzi, S.; Fusi, C.; Benemei, S.; Pedretti, P.; Patacchini, R.; Nilius, B.; Prenen, J.; Creminon, C.; Geppetti, P.; Nassini, R. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch., 2012, 463(4), 561-569.
[http://dx.doi.org/10.1007/s00424-011-1071-x] [PMID: 22258694]
[141]
Liu, T.T.; Bi, H.S.; Lv, S.Y.; Wang, X.R.; Yue, S.W. Inhibition of the expression and function of TRPV4 by RNA interference in dorsal root ganglion. Neurol. Res., 2010, 32(5), 466-471.
[http://dx.doi.org/10.1179/174313209X408945] [PMID: 19278577]
[142]
Suresh, K.; Servinsky, L.; Jiang, H.; Bigham, Z.; Yun, X.; Kliment, C.; Huetsch, J.; Damarla, M.; Shimoda, L.A. Reactive oxygen species induced Ca2+ influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2018, 314(5), L893-L907.
[http://dx.doi.org/10.1152/ajplung.00430.2017] [PMID: 29388466]
[143]
Bai, J.Z.; Lipski, J. Involvement of TRPV4 channels in Aβ(40)-induced hippocampal cell death and astrocytic Ca(2+) signalling. Neurotoxicology, 2014, 41, 64-72.
[http://dx.doi.org/10.1016/j.neuro.2014.01.001] [PMID: 24457011]
[144]
Zhang, X.; Gao, S.; Tanaka, M.; Zhang, Z.; Huang, Y.; Mitsui, T.; Kamiyama, M.; Koizumi, S.; Fan, J.; Takeda, M.; Yao, J. Carbenoxolone inhibits TRPV4 channel-initiated oxidative urothelial injury and ameliorates cyclophosphamide-induced bladder dysfunction. J. Cell. Mol. Med., 2017, 21(9), 1791-1802.
[http://dx.doi.org/10.1111/jcmm.13100] [PMID: 28244642]
[145]
Ma, X.; He, D.; Ru, X.; Chen, Y.; Cai, Y.; Bruce, I.C.; Xia, Q.; Yao, X.; Jin, J. Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. Br. J. Pharmacol., 2012, 166(1), 349-358.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01767.x] [PMID: 22049911]
[146]
Santo-Domingo, J.; Demaurex, N. Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta, 2010, 1797(6-7), 907-912.
[http://dx.doi.org/10.1016/j.bbabio.2010.01.005] [PMID: 20079335]
[147]
Hongpaisan, J.; Winters, C.A.; Andrews, S.B. Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons. J. Neurosci., 2004, 24(48), 10878-10887.
[http://dx.doi.org/10.1523/JNEUROSCI.3278-04.2004] [PMID: 15574738]
[148]
Zeng, B.; Chen, G.L.; Xu, S.Z. Divalent copper is a potent extracellular blocker for TRPM2 channel. Biochem. Biophys. Res. Commun., 2012, 424(2), 279-284.
[http://dx.doi.org/10.1016/j.bbrc.2012.06.107] [PMID: 22750002]
[149]
Yousuf, S.; Atif, F.; Ahmad, M.; Hoda, M.N.; Khan, M.B.; Ishrat, T.; Islam, F. Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Res., 2007, 1147, 218-225.
[http://dx.doi.org/10.1016/j.brainres.2007.01.143] [PMID: 17376411]
[150]
Uğuz, A.C.; Nazıroğlu, M. Effects of selenium on calcium signaling and apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem. Res., 2012, 37(8), 1631-1638.
[http://dx.doi.org/10.1007/s11064-012-0758-5] [PMID: 22476699]
[151]
Reeves, M.A.; Bellinger, F.P.; Berry, M.J. The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid. Redox Signal., 2010, 12(7), 809-818.
[http://dx.doi.org/10.1089/ars.2009.2883] [PMID: 19769485]
[152]
Dominiak, A.; Wilkaniec, A.; Jęśko, H.; Czapski, G.A.; Lenkiewicz, A.M.; Kurek, E.; Wroczyński, P.; Adamczyk, A. Selol, an organic selenium donor, prevents lipopolysaccharide-induced oxidative stress and inflammatory reaction in the rat brain. Neurochem. Int., 2017, 108, 66-77.
[http://dx.doi.org/10.1016/j.neuint.2017.02.014] [PMID: 28238791]
[153]
El-Ghazaly, M.A.; Fadel, N.; Rashed, E.; El-Batal, A.; Kenawy, S.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol., 2017, 95(2), 101-110.
[http://dx.doi.org/10.1139/cjpp-2016-0183] [PMID: 27936913]
[154]
Anversa, R.G.; Sousa, F.S.S.; Birmann, P.T.; Lima, D.B.; Lenardão, E.J.; Bruning, C.A.; Savegnago, L. Antinociceptive and anti-inflammatory effects of 1,2-bis-(4 methoxyphenylselanyl) styrene in mice: involvement of the serotonergic system. J. Pharm. Pharmacol., 2018, 70(7), 901-909.
[http://dx.doi.org/10.1111/jphp.12907] [PMID: 29582424]
[155]
Birmann, P.T.; Sousa, F.S.S.; de Oliveira, D.H.; Domingues, M.; Vieira, B.M.; Lenardão, E.J.; Savegnago, L. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole, a new selenium compound elicits an antinociceptive and anti-inflammatory effect in mice. Eur. J. Pharmacol., 2018, 827, 71-79.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.005] [PMID: 29535001]
[156]
Marcondes Sari, M.H.; Zborowski, V.A.; Ferreira, L.M.; Jardim, N.D.S.; Araujo, P.C.O.; Brüning, C.A.; Cruz, L.; Nogueira, C.W. Enhanced pharmacological actions of p,p′-methoxyl-diphenyl diselenide-loaded polymeric nanocapsules in a mouse model of neuropathic pain: Behavioral and molecular insights. J. Trace Elem. Med. Biol., 2018, 46, 17-25.
[http://dx.doi.org/10.1016/j.jtemb.2017.11.002] [PMID: 29413106]
[157]
Sari, M.H.M.; Ferreira, L.M.; AngonesiZborowski, V.; Araujo, P.C.O.; Nadal, J.M.; Farago, P.V.; Cruz, L.; Nogueira, C.W. p,p′-Methoxyl-diphenyl diselenideincorporation into polymeric nanocapsules improves its antinociceptive action: Physicochemical and behavioral studies. Colloids Surf. B Biointerfaces, 2017, 157, 464-472.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.016] [PMID: 28651193]
[158]
Oliveira, C.E.S.; Marcondes Sari, M.H.M.; Zborowski, V.A.; Prado, V.C.; Nogueira, C.W.; Zeni, G. Pain-depression dyad induced by reserpine is relieved by p,p′-methoxyl-diphenyl diselenide in rats. Eur. J. Pharmacol., 2016, 791, 794-802.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.021] [PMID: 27769701]
[159]
Mansel, R.E.; Das, T.; Baggs, G.E.; Noss, M.J.; Jennings, W.P.; Cohen, J.; Portman, D.; Cohen, M.; Voss, A.C. A Randomized controlled multicenter trial of an investigational liquid nutritional formula in women with cyclic breast pain associated with fibrocystic breast changes. J. Womens Health (Larchmt.), 2018, 27(3), 333-340.
[http://dx.doi.org/10.1089/jwh.2017.6406] [PMID: 29237134]
[160]
Barros-Neto, J.A.; Souza-Machado, A.; Kraychete, D.C.; Jesus, R.P.; Cortes, M.L.; Lima, M.D.; Freitas, M.C.; Santos, T.M.; Viana, G.F.; Menezes-Filho, J.A. Selenium and. PLoS One, 2016, 11(10)e0164302
[http://dx.doi.org/10.1371/journal.pone.0164302] [PMID: 27755562]
[161]
Brüning, C.A.; Martini, F.; Soares, S.M.; Sampaio, T.B.; Gai, B.M.; Duarte, M.M.; Nogueira, C.W. m-Trifluoromethyl-diphenyl diselenide, a multi-target selenium compound, prevented mechanical allodynia and depressive-like behavior in a mouse comorbid pain and depression model. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 63, 35-46.
[http://dx.doi.org/10.1016/j.pnpbp.2015.05.011] [PMID: 26025319]
[162]
Kirk, G.R.; White, J.S.; McKie, L.; Stevenson, M.; Young, I.; Clements, W.D.; Rowlands, B.J. Combined antioxidant therapy reduces pain and improves quality of life in chronic pancreatitis. J. Gastrointest. Surg., 2006, 10(4), 499-503.
[http://dx.doi.org/10.1016/j.gassur.2005.08.035] [PMID: 16627214]
[163]
Ozkul, A.; Ayhan, M.; Yenisey, C.; Akyol, A.; Guney, E.; Ergin, F.A. The role of oxidative stress and endothelial injury in diabetic neuropathy and neuropathic pain. Neuroendocrinol. Lett., 2010, 31(2), 261-264.
[PMID: 20424576]
[164]
Kiasalari, Z.; Rahmani, T.; Mahmoudi, N.; Baluchnejadmojarad, T.; Roghani, M. Diosgenin ameliorates development of neuropathic pain in diabetic rats: Involvement of oxidative stress and inflammation. Biomed. Pharmacother., 2017, 86, 654-661.
[http://dx.doi.org/10.1016/j.biopha.2016.12.068] [PMID: 28033582]
[165]
Nazıroğlu, M.; Dikici, D.M.; Dursun, S. Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem. Res., 2012, 37(10), 2065-2075.
[http://dx.doi.org/10.1007/s11064-012-0850-x] [PMID: 22846968]
[166]
Olukman, M.; Önal, A.; Celenk, F.G.; Uyanıkgil, Y.; Cavuşoğlu, T.; Düzenli, N.; Ülker, S. Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats. Neural Regen. Res., 2018, 13(9), 1657-1664.
[http://dx.doi.org/10.4103/1673-5374.232530] [PMID: 30127129]
[167]
Ziegler, D.; Ametov, A.; Barinov, A.; Dyck, P.J.; Gurieva, I.; Low, P.A.; Munzel, U.; Yakhno, N.; Raz, I.; Novosadova, M.; Maus, J.; Samigullin, R. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care, 2006, 29(11), 2365-2370.
[http://dx.doi.org/10.2337/dc06-1216] [PMID: 17065669]
[168]
Agathos, E.; Tentolouris, A.; Eleftheriadou, I.; Katsaouni, P.; Nemtzas, I.; Petrou, A.; Papanikolaou, C.; Tentolouris, N. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J. Int. Med. Res., 2018, 46(5), 1779-1790.
[http://dx.doi.org/10.1177/0300060518756540] [PMID: 29517942]
[169]
Rajanandh, M.G.; Kosey, S.; Prathiksha, G. Assessment of antioxidant supplementation on the neuropathic pain score and quality of life in diabetic neuropathy patients - a randomized controlled study. Pharmacol. Rep., 2014, 66(1), 44-48.
[http://dx.doi.org/10.1016/j.pharep.2013.08.003] [PMID: 24905305]
[170]
Zhang, Y.P.; Song, C.Y.; Yuan, Y.; Eber, A.; Rodriguez, Y.; Levitt, R.C.; Takacs, P.; Yang, Z.; Goldberg, R.; Candiotti, K.A. Diabetic neuropathic pain development in type 2 diabetic mouse model and the prophylactic and therapeutic effects of coenzyme Q10. Neurobiol. Dis., 2013, 58, 169-178.
[http://dx.doi.org/10.1016/j.nbd.2013.05.003] [PMID: 23684663]
[171]
Bujalska, M.; Winecka, R.; Gumułka, S.W. Effect of selol on the opioids activity in streptozotocin induced hyperalgesia. Acta Pol. Pharm., 2008, 65(6), 691-696.
[PMID: 19172850]
[172]
Facer, P.; Casula, M.A.; Smith, G.D.; Benham, C.D.; Chessell, I.P.; Bountra, C.; Sinisi, M.; Birch, R.; Anand, P. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol., 2007, 7, 11.
[http://dx.doi.org/10.1186/1471-2377-7-11] [PMID: 17521436]
[173]
Tominaga, M. Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1. Yakugaku Zasshi, 2010, 130(3), 289-294.
[http://dx.doi.org/10.1248/yakushi.130.289] [PMID: 20190512]
[174]
Wei, H.; Hämäläinen, M.M.; Saarnilehto, M.; Koivisto, A.; Pertovaara, A. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology, 2009, 111(1), 147-154.
[http://dx.doi.org/10.1097/ALN.0b013e3181a1642b] [PMID: 19512877]
[175]
Jaggi, A.S.; Singh, N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 2012, 291(1-3), 1-9.
[http://dx.doi.org/10.1016/j.tox.2011.10.019] [PMID: 22079234]
[176]
Duggett, N.A.; Griffiths, L.A.; McKenna, O.E.; de Santis, V.; Yongsanguanchai, N.; Mokori, E.B.; Flatters, S.J. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience, 2016, 333, 13-26.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.050] [PMID: 27393249]
[177]
Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; Eccleston, C.; Kalso, E.; Bennett, D.L.; Dworkin, R.H.; Raja, S.N. Neuropathic pain. Nat. Rev. Dis. Primers, 2017, 3, 17002.
[http://dx.doi.org/10.1038/nrdp.2017.2] [PMID: 28205574]
[178]
Binder, A.; May, D.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.D.; Berthele, A.; Faltraco, F.; Flor, H.; Gierthmühlen, J.; Haenisch, S.; Huge, V.; Magerl, W.; Maihöfner, C.; Richter, H.; Rolke, R.; Scherens, A.; Uçeyler, N.; Ufer, M.; Wasner, G.; Zhu, J.; Cascorbi, I. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLoS One, 2011, 6(3)e17387
[http://dx.doi.org/10.1371/journal.pone.0017387] [PMID: 21468319]
[179]
Tominaga, M. Nociception and TRP channels. Handb. Exp. Pharmacol., 2007, 179, 489-505.
[http://dx.doi.org/10.1007/978-3-540-34891-7_29] [PMID: 17217075]
[180]
Chiba, T.; Oka, Y.; Sashida, H.; Kanbe, T.; Abe, K.; Utsunomiya, I.; Taguchi, K. Vincristine-induced peripheral neuropathic pain and expression of transient receptor potential vanilloid 1 in rat. J. Pharmacol. Sci., 2017, 133(4), 254-260.
[http://dx.doi.org/10.1016/j.jphs.2017.03.004] [PMID: 28410966]
[181]
Chukyo, A.; Chiba, T.; Kambe, T.; Yamamoto, K.; Kawakami, K.; Taguchi, K.; Abe, K. Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivity., Neuropeptides, 2017, 67, 95-101. MID: 29274843,
[182]
Miao, F.; Wang, R.; Cui, G.; Li, X.; Wang, T.; Li, X. Engagement of MicroRNA-155 in Exaggerated Oxidative Stress Signal and TRPA1 in the Dorsal Horn of the Spinal Cord and Neuropathic Pain During Chemotherapeutic Oxaliplatin. Neurotox. Res., 2019, 36(4), 712-723.
[http://dx.doi.org/10.1007/s12640-019-00039-5] [PMID: 31016687]
[183]
Galley, H.F.; McCormick, B.; Wilson, K.L.; Lowes, D.A.; Colvin, L.; Torsney, C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J. Pineal Res., 2017, 63(4)e12444
[http://dx.doi.org/10.1111/jpi.12444] [PMID: 28833461]
[184]
Zhao, X.; Liu, L.; Wang, Y.; Wang, G.; Zhao, Y.; Zhang, Y. Electroacupuncture enhances antioxidative signal pathway and attenuates neuropathic pain induced by chemotherapeutic paclitaxel. Physiol. Res., 2019, 68(3), 501-510.
[http://dx.doi.org/10.33549/physiolres.934084] [PMID: 30904013]
[185]
Waseem, M.; Kaushik, P.; Tabassum, H.; Parvez, S. Role of Mitochondrial mechanism in chemotherapy-induced peripheral neuropathy. Curr. Drug Metab., 2018, 19(1), 47-54.
[http://dx.doi.org/10.2174/1389200219666171207121313] [PMID: 29219049]
[186]
Bai, J.Z.; Lipski, J. Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology, 2010, 31(2), 204-214.
[http://dx.doi.org/10.1016/j.neuro.2010.01.001] [PMID: 20064552]
[187]
Macpherson, L.J.; Dubin, A.E.; Evans, M.J.; Marr, F.; Schultz, P.G.; Cravatt, B.F.; Patapoutian, A. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature, 2007, 445(7127), 541-545.
[http://dx.doi.org/10.1038/nature05544] [PMID: 17237762]
[188]
Salazar, H.; Llorente, I.; Jara-Oseguera, A.; García-Villegas, R.; Munari, M.; Gordon, S.E.; Islas, L.D.; Rosenbaum, T. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat. Neurosci., 2008, 11(3), 255-261.
[http://dx.doi.org/10.1038/nn2056] [PMID: 18297068]
[189]
Yoshida, T.; Inoue, R.; Morii, T.; Takahashi, N.; Yamamoto, S.; Hara, Y.; Tominaga, M.; Shimizu, S.; Sato, Y.; Mori, Y. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol., 2006, 2(11), 596-607.
[http://dx.doi.org/10.1038/nchembio821] [PMID: 16998480]
[190]
Chung, Y.W.; Jeong, D.; Noh, O.J.; Park, Y.H.; Kang, S.I.; Lee, M.G.; Lee, T.H.; Yim, M.B.; Kim, I.Y. Antioxidative role of selenoprotein W in oxidant-induced mouse embryonic neuronal cell death. Mol. Cells, 2009, 27(5), 609-613.
[http://dx.doi.org/10.1007/s10059-009-0074-3] [PMID: 19466610]
[191]
Sen, C.K.; Packer, L. Thiol homeostasis and supplements in physical exercise. Am. J. Clin. Nutr., 2000, 72(2)(Suppl.), 653S-669S.
[http://dx.doi.org/10.1093/ajcn/72.2.653S] [PMID: 10919972]
[192]
Liu, B.Y.; Tsai, T.L.; Ho, C.Y.; Lu, S.H.; Lai, C.J.; Kou, Y.R. Role of TRPA1 and TRPV1 in the ROS-dependent sensory irritation of superior laryngeal capsaicin-sensitive afferents by cigarette smoke in anesthetized rats. Pulm. Pharmacol. Ther., 2013, 26(3), 364-372.
[http://dx.doi.org/10.1016/j.pupt.2013.01.010] [PMID: 23384628]
[193]
Straub, I.; Krügel, U.; Mohr, F.; Teichert, J.; Rizun, O.; Konrad, M.; Oberwinkler, J.; Schaefer, M. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol., 2013, 84(5), 736-750.
[http://dx.doi.org/10.1124/mol.113.086843] [PMID: 24006495]
[194]
Özdemir, U.S.; Nazıroğlu, M.; Şenol, N.; Ghazizadeh, V. Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels. Mol. Neurobiol., 2016, 53(6), 3540-3551.
[http://dx.doi.org/10.1007/s12035-015-9292-1] [PMID: 26099309]
[195]
Akpınar, H.; Nazıroğlu, M.; Övey, I.S.; Çiğ, B.; Akpınar, O. The neuroprotective action of dexmedetomidine on apoptosis, calcium entry and oxidative stress in cerebral ischemia-induced rats: Contribution of TRPM2 and TRPV1 channels. Sci. Rep., 2016, 6, 37196.
[http://dx.doi.org/10.1038/srep37196] [PMID: 27872485]
[196]
Shirakawa, H.; Yamaoka, T.; Sanpei, K.; Sasaoka, H.; Nakagawa, T.; Kaneko, S. TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons. Biochem. Biophys. Res. Commun., 2008, 377(4), 1211-1215.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.152] [PMID: 18996081]
[197]
Yeon, K.Y.; Kim, S.A.; Kim, Y.H.; Lee, M.K.; Ahn, D.K.; Kim, H.J.; Kim, J.S.; Jung, S.J.; Oh, S.B. Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J. Dent. Res., 2010, 89(2), 170-174.
[http://dx.doi.org/10.1177/0022034509356169] [PMID: 20040737]
[198]
Uslusoy, F.; Nazıroğlu, M.; Çiğ, B. Inhibition of the TRPM2 and TRPV1 Channels through Hypericum perforatum in sciatic nerve injury-induced rats demonstrates their key role in apoptosis and mitochondrial oxidative stress of sciatic nerve and dorsal root ganglion. Front. Physiol., 2017, 8, 335.
[http://dx.doi.org/10.3389/fphys.2017.00335] [PMID: 28620309]
[199]
Ogawa, N.; Kurokawa, T.; Mori, Y. Sensing of redox status by TRP channels. Cell Calcium, 2016, 60(2), 115-122.
[http://dx.doi.org/10.1016/j.ceca.2016.02.009] [PMID: 26969190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy