Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Drug Delivery Based on Nanotechnology for Target Bone Disease

Author(s): Xiaosong Yang, Shizhu Chen, Xiao Liu, Miao Yu and Xiaoguang Liu*

Volume 16, Issue 9, 2019

Page: [782 - 792] Pages: 11

DOI: 10.2174/1567201816666190917123948

Price: $65

Abstract

Bone diseases are a serious problem in modern human life. With the coming acceleration of global population ageing, this problem will become more and more serious. Due to the specific physiological characteristics and local microenvironment of bone tissue, it is difficult to deliver drugs to the lesion site. Therefore, the traditional orthopedic medicine scheme has the disadvantages of high drug frequency, large dose and relatively strong side effects. How to target deliver drugs to the bone tissue or even target cells is the focus of the development of new drugs. Nano drug delivery system with a targeting group can realize precise delivery of orthopedic drugs and effectively reduce the systemic toxicity. In addition, the application of bone tissue engineering scaffolds and biomedical materials to realize in situ drug delivery also are research hotspot. In this article, we briefly review the application of nanotechnology in targeted therapies for bone diseases.

Keywords: Bone disease, nanotechnology, targeted delivery, scaffold, cement, orthopedic medicine.

Graphical Abstract
[1]
Florencio-Silva, R.; Sasso, G.R.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res. Int., 2015, 2015421746
[http://dx.doi.org/10.1155/2015/421746] [PMID: 26247020]
[2]
Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M.M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science, 2018, 360(6388)pii: eaao2189
[http://dx.doi.org/10.1126/science.aao2189] [PMID: 29724924]
[3]
Liu, Y.; Luo, D.; Wang, T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small, 2016, 12(34), 4611-4632.
[http://dx.doi.org/10.1002/smll.201600626] [PMID: 27322951]
[4]
Lopes, D.; Martins-Cruz, C.; Oliveira, M.B.; Mano, J.F. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials, 2018, 185, 240-275.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.028] [PMID: 30261426]
[5]
Lerner, U.H.; Kindstedt, E.; Lundberg, P. The critical interplay between bone resorbing and bone forming cells. J. Clin. Periodontol., 2019, 46(Suppl. 21), 33-51.
[http://dx.doi.org/10.1111/jcpe.13051] [PMID: 30623989]
[6]
Dar, H.Y.; Azam, Z.; Anupam, R.; Mondal, R.K.; Srivastava, R.K. Osteoimmunology: The Nexus between bone and immune system. Front. Biosci., 2018, 23, 464-492.
[http://dx.doi.org/10.2741/4600] [PMID: 28930556]
[7]
Cundy, T. Paget’s disease of bone. Metabolism, 2018, 80, 5-14.
[http://dx.doi.org/10.1016/j.metabol.2017.06.010] [PMID: 28780255]
[8]
Okazaki, R. Body weight and bone/calcium metabolism. Obesity and vitamin D. Clin. Calcium, 2018, 28(7), 947-956.
[PMID: 29950548]
[9]
Parfitt, A.M.; Pødenphant, J.; Villanueva, A.R.; Frame, B. Metabolic bone disease with and without osteomalacia after intestinal bypass surgery: A bone histomorphometric study. Bone, 1985, 6(4), 211-220.
[http://dx.doi.org/10.1016/8756-3282(85)90003-1] [PMID: 3840379]
[10]
Mbalaviele, G.; Novack, D.V.; Schett, G.; Teitelbaum, S.L. Inflammatory osteolysis: A conspiracy against bone. J. Clin. Invest., 2017, 127(6), 2030-2039.
[http://dx.doi.org/10.1172/JCI93356] [PMID: 28569732]
[11]
Bijelic, R.; Milicevic, S.; Balaban, J. Risk factors for osteoporosis in postmenopausal women. Med. Arh., 2017, 71(1), 25-28.
[http://dx.doi.org/10.5455/medarh.2017.71.25-28] [PMID: 28428669]
[12]
Klein-Nulend, J.; van Oers, R.F.; Bakker, A.D.; Bacabac, R.G. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J. Biomech., 2015, 48(5), 855-865.
[http://dx.doi.org/10.1016/j.jbiomech.2014.12.007] [PMID: 25582356]
[13]
Montazerian, H.; Davoodi, E.; Asadi-Eydivand, M.; Kadkhodapour, J.; Solati-Hashjin, M. Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties. Mater. Des., 2017, 126, 98-114.
[http://dx.doi.org/10.1016/j.matdes.2017.04.009]
[14]
Li, C.J.; Liu, X.Z.; Zhang, L.; Chen, L.B.; Shi, X.; Wu, S.J.; Zhao, J.N. Advances in bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma. Orthop. Surg., 2016, 8(2), 105-110.
[http://dx.doi.org/10.1111/os.12238] [PMID: 27384718]
[15]
Wang, D.; Miller, S.C.; Kopecková, P.; Kopecek, J. Bone-targeting macromolecular therapeutics. Adv. Drug Deliv. Rev., 2005, 57(7), 1049-1076.
[http://dx.doi.org/10.1016/j.addr.2004.12.011] [PMID: 15876403]
[16]
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine (Lond.), 2012, 8(2), 147-166.
[http://dx.doi.org/10.1016/j.nano.2011.05.016] [PMID: 21703993]
[17]
Hassan, S.; Prakash, G.; Ozturk, A.; Saghazadeh, S.; Sohail, M.F.; Seo, J.; Dockmeci, M.; Zhang, Y.S.; Khademhosseini, A. Evolution and clinical translation of drug delivery nanomaterials. Nano Today, 2017, 15, 91-106.
[http://dx.doi.org/10.1016/j.nantod.2017.06.008] [PMID: 29225665]
[18]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[19]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[20]
Garimella, R.; Eltorai, A.E. Nanotechnology in orthopedics. J. Orthop., 2016, 14(1), 30-33.
[http://dx.doi.org/10.1016/j.jor.2016.10.026] [PMID: 27821998]
[21]
Palmer, L.C.; Newcomb, C.J.; Kaltz, S.R.; Spoerke, E.D.; Stupp, S.I. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev., 2008, 108(11), 4754-4783.
[http://dx.doi.org/10.1021/cr8004422] [PMID: 19006400]
[22]
Dorozhkin, S. Calcium orthophosphates in nature, biology and medicine. Materials (Basel), 2009, 2, 399-498.
[http://dx.doi.org/10.3390/ma2020399]
[23]
Pierce, W.M., Jr; Waite, L.C. Bone-targeted carbonic anhydrase inhibitors: Effect of a proinhibitor on bone resorption in vitro. Proc. Soc. Exp. Biol. Med., 1987, 186(1), 96-102.
[http://dx.doi.org/10.3181/00379727-186-42590A] [PMID: 3628257]
[24]
Fleisch, H.; Russell, R.; Bisaz, S.; Casey, P.; Mühlbauer, R. The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution of calcium phosphate in vitro and in vivo. Calcif. Tissue Res., 1968, 2(Suppl.), 10-10a.
[http://dx.doi.org/10.1007/BF02065192]
[25]
Westenfeld, R.; Brandenburg, V.M.; Ketteler, M. Bisphosphonates can improve bone mineral density in renal transplant recipients. Nat. Clin. Pract. Nephrol., 2006, 2(12), 676-677.
[http://dx.doi.org/10.1038/ncpneph0334] [PMID: 17124524]
[26]
Prashar, A.; Dudek, W.; Prystupa, A.; Mosiewicz, J. Clinical and theoretical contrast of common non-septic causes of bone degeneration. J. Pre-Clin. Clin. Res., 2012, 6, 7-9.
[27]
Fu, D.; He, X.; Yang, S.; Xu, W.; Lin, T.; Feng, X. Zoledronic acid inhibits vasculogenic mimicry in murine osteosarcoma cell line in vitro. BMC Musculoskelet. Disord., 2011, 12, 146.
[http://dx.doi.org/10.1186/1471-2474-12-146] [PMID: 21718535]
[28]
Ayyavoo, A.; Derraik, J.G.; Cutfield, W.S.; Hofman, P.L. Elimination of pain and improvement of exercise capacity in Camurati-Engelmann disease with losartan. J. Clin. Endocrinol. Metab., 2014, 99(11), 3978-3982.
[http://dx.doi.org/10.1210/jc.2014-2025] [PMID: 25140400]
[29]
Uludag, H. Bisphosphonates as a foundation of drug delivery to bone. Curr. Pharm. Des., 2002, 8(21), 1929-1944.
[http://dx.doi.org/10.2174/1381612023393585] [PMID: 12171528]
[30]
Brown, J.P.; Morin, S.; Leslie, W.; Papaioannou, A.; Cheung, A.M.; Davison, K.S.; Goltzman, D.; Hanley, D.A.; Hodsman, A.; Josse, R.; Jovaisas, A.; Juby, A.; Kaiser, S.; Karaplis, A.; Kendler, D.; Khan, A.; Ngui, D.; Olszynski, W.; Ste-Marie, L.G.; Adachi, J. Bisphosphonates for treatment of osteoporosis: Expected benefits, potential harms, and drug holidays. Can. Fam. Physician, 2014, 60(4), 324-333.
[PMID: 24733321]
[31]
Sun, W.; Han, Y.; Li, Z.; Ge, K.; Zhang, J. Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir, 2016, 32(36), 9237-9244.
[http://dx.doi.org/10.1021/acs.langmuir.6b02228] [PMID: 27531422]
[32]
Sun, W.; Ge, K.; Jin, Y.; Han, Y.; Zhang, H.; Zhou, G.; Yang, X.; Liu, D.; Liu, H.; Liang, X-J.; Zhang, J. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano, 2019, 13(7), 7556-7567.
[http://dx.doi.org/10.1021/acsnano.9b00097] [PMID: 31259530]
[33]
Yin, Q.; Tang, L.; Cai, K.; Tong, R.; Sternberg, R.; Yang, X.; Dobrucki, L.W.; Borst, L.B.; Kamstock, D.; Song, Z.; Helferich, W.G.; Cheng, J.; Fan, T.M. Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proc. Natl. Acad. Sci. USA, 2016, 113(32), E4601-E4609.
[http://dx.doi.org/10.1073/pnas.1603316113] [PMID: 27457945]
[34]
Swami, A.; Reagan, M.R.; Basto, P.; Mishima, Y.; Kamaly, N.; Glavey, S.; Zhang, S.; Moschetta, M.; Seevaratnam, D.; Zhang, Y.; Liu, J.; Memarzadeh, M.; Wu, J.; Manier, S.; Shi, J.; Bertrand, N.; Lu, Z.N.; Nagano, K.; Baron, R.; Sacco, A.; Roccaro, A.M.; Farokhzad, O.C.; Ghobrial, I.M. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc. Natl. Acad. Sci. USA, 2014, 111(28), 10287-10292.
[http://dx.doi.org/10.1073/pnas.1401337111] [PMID: 24982170]
[35]
Rotman, S.G.; Grijpma, D.W.; Richards, R.G.; Moriarty, T.F.; Eglin, D.; Guillaume, O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J. Control. Release, 2018, 269, 88-99.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.009] [PMID: 29127000]
[36]
Guo, J.; Zhang, M.; Li, Y.F.; Zhen, P.; Hu, X. Bone-targeted ultradeformable nanoliposomes. Beijing Da Xue Xue Bao, 2009, 41(2), 203-207.
[PMID: 19377631]
[37]
Kennel, K.A.; Drake, M.T. Adverse effects of bisphosphonates: Implications for osteoporosis management. Mayo Clin. Proc., 2009, 84(7), 632-637.
[http://dx.doi.org/10.1016/S0025-6196(11)60752-0] [PMID: 19567717]
[38]
Falk, L.; Fredlund, H.; Jensen, J.S. Tetracycline treatment does not eradicate Mycoplasma genitalium. Sex. Transm. Infect., 2003, 79(4), 318-319.
[http://dx.doi.org/10.1136/sti.79.4.318] [PMID: 12902584]
[39]
Golub, L.M.; Lee, H.M.; Lehrer, G.; Nemiroff, A.; McNamara, T.F.; Kaplan, R.; Ramamurthy, N.S. Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. J. Periodontal Res., 1983, 18(5), 516-526.
[http://dx.doi.org/10.1111/j.1600-0765.1983.tb00388.x] [PMID: 6315909]
[40]
Caton, J.G.; Ciancio, S.G.; Blieden, T.M.; Bradshaw, M.; Crout, R.J.; Hefti, A.F.; Massaro, J.M.; Polson, A.M.; Thomas, J.; Walker, C. Treatment with subantimicrobial dose doxycycline improves the efficacy of scaling and root planing in patients with adult periodontitis. J. Periodontol., 2000, 71(4), 521-532.
[http://dx.doi.org/10.1902/jop.2000.71.4.521] [PMID: 10807113]
[41]
Sanchez, J.; Somolinos, A.L.; Almodóvar, P.I.; Webster, G.; Bradshaw, M.; Powala, C. A randomized, double-blind, placebo-controlled trial of the combined effect of doxycycline hyclate 20-mg tablets and metronidazole 0.75% topical lotion in the treatment of rosacea. J. Am. Acad. Dermatol., 2005, 53(5), 791-797.
[http://dx.doi.org/10.1016/j.jaad.2005.04.069] [PMID: 16243127]
[42]
Lokeshwar, B.L.; Selzer, M.G.; Zhu, B.Q.; Block, N.L.; Golub, L.M. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int. J. Cancer, 2002, 98(2), 297-309.
[http://dx.doi.org/10.1002/ijc.10168] [PMID: 11857423]
[43]
O’Dell, J.R.; Elliott, J.R.; Mallek, J.A.; Mikuls, T.R.; Weaver, C.A.; Glickstein, S.; Blakely, K.M.; Hausch, R.; Leff, R.D. Treatment of early seropositive rheumatoid arthritis: doxycycline plus methotrexate versus methotrexate alone. Arthritis Rheum., 2006, 54(2), 621-627.
[http://dx.doi.org/10.1002/art.21620] [PMID: 16447240]
[44]
Sasaki, T.; Ramamurthy, N.S.; Golub, L.M. Tetracycline administration increases collagen synthesis in osteoblasts of streptozotocin-induced diabetic rats: A quantitative autoradiographic study. Calcif. Tissue Int., 1992, 50(5), 411-419.
[http://dx.doi.org/10.1007/BF00296771] [PMID: 1534508]
[45]
Bain, S.; Ramamurthy, N.S.; Impeduglia, T.; Scolman, S.; Golub, L.M.; Rubin, C. Tetracycline prevents cancellous bone loss and maintains near-normal rates of bone formation in streptozotocin diabetic rats. Bone, 1997, 21(2), 147-153.
[http://dx.doi.org/10.1016/S8756-3282(97)00104-X] [PMID: 9267690]
[46]
Craig, R.G.; Yu, Z.; Xu, L.; Barr, R.; Ramamurthy, N.; Boland, J.; Schneir, M.; Golub, L.M. A chemically modified tetracycline inhibits streptozotocin-induced diabetic depression of skin collagen synthesis and steady-state type I procollagen mRNA. Biochim. Biophys. Acta, 1998, 1402(3), 250-260.
[http://dx.doi.org/10.1016/S0167-4889(98)00008-1] [PMID: 9606983]
[47]
Perrin, D.D. Binding of tetracyclines to bone. Nature, 1965, 208(5012), 787-788.
[http://dx.doi.org/10.1038/208787a0] [PMID: 5868891]
[48]
Myers, H.M. Alizarin and tetracycline binding by bone mineral. Am. J. Phys. Anthropol., 1968, 29(2), 179-182.
[http://dx.doi.org/10.1002/ajpa.1330290211] [PMID: 4178210]
[49]
Tam, C.S.; Anderson, W. Tetracycline labeling of bone in vivo. Calcif. Tissue Int., 1980, 30(2), 121-125.
[http://dx.doi.org/10.1007/BF02408616] [PMID: 6155183]
[50]
Mundy, G.; Garrett, R.; Harris, S.; Chan, J.; Chen, D.; Rossini, G.; Boyce, B.; Zhao, M.; Gutierrez, G. Stimulation of bone formation in vitro and in rodents by statins. Science, 1999, 286(5446), 1946-1949.
[http://dx.doi.org/10.1126/science.286.5446.1946] [PMID: 10583956]
[51]
Blum, C.B. Comparison of properties of four inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Am. J. Cardiol., 1994, 73(14), 3D-11D.
[http://dx.doi.org/10.1016/0002-9149(94)90626-2] [PMID: 8198021]
[52]
Tikiz, C.; Tikiz, H.; Taneli, F.; Gümüşer, G.; Tüzün, C. Effects of simvastatin on bone mineral density and remodeling parameters in postmenopausal osteopenic subjects: 1-year follow-up study. Clin. Rheumatol., 2005, 24(5), 447-452.
[http://dx.doi.org/10.1007/s10067-004-1053-x] [PMID: 15742122]
[53]
Wang, H.; Liu, J.; Tao, S.; Chai, G.; Wang, J.; Hu, F-Q.; Yuan, H. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int. J. Nanomedicine, 2015, 10, 5671-5685.
[PMID: 26388691]
[54]
Sánchez, A.R.; Rogers, R.S., III; Sheridan, P.J. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int. J. Dermatol., 2004, 43(10), 709-715.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02108.x] [PMID: 15485524]
[55]
Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 1997, 386(6620), 78-81.
[http://dx.doi.org/10.1038/386078a0] [PMID: 9052783]
[56]
Kothari, A.N.; Arffa, M.L.; Chang, V.; Blackwell, R.H.; Syn, W-K.; Zhang, J.; Mi, Z.; Kuo, P.C. Osteopontin—a master regulator of epithelial-mesenchymal transition. J. Clin. Med., 2016, 5(4), 39.
[http://dx.doi.org/10.3390/jcm5040039] [PMID: 27023622]
[57]
Midura, R.J.; Wang, A.; Lovitch, D.; Law, D.; Powell, K.; Gorski, J.P. Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J. Biol. Chem., 2004, 279(24), 25464-25473.
[http://dx.doi.org/10.1074/jbc.M312409200] [PMID: 15004030]
[58]
Kasugai, S.; Fujisawa, R.; Waki, Y.; Miyamoto, K.; Ohya, K. Selective drug delivery system to bone: Small peptide (Asp)6 conjugation. J. Bone Miner. Res., 2000, 15(5), 936-943.
[http://dx.doi.org/10.1359/jbmr.2000.15.5.936] [PMID: 10804024]
[59]
Butler, W.T. The nature and significance of osteopontin. Connect. Tissue Res., 1989, 23(2-3), 123-136.
[http://dx.doi.org/10.3109/03008208909002412] [PMID: 2698313]
[60]
Huang, L.; Wang, X.; Cao, H.; Li, L.; Chow, D.H-K.; Tian, L.; Wu, H.; Zhang, J.; Wang, N.; Zheng, L.; Yao, X.; Yang, Z.; Qin, L. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials, 2018, 182, 58-71.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.046] [PMID: 30107270]
[61]
Zhu, Q.; Gibson, M.P.; Liu, Q.; Liu, Y.; Lu, Y.; Wang, X.; Feng, J.Q.; Qin, C. Proteolytic processing of dentin sialophosphoprotein (DSPP) is essential to dentinogenesis. J. Biol. Chem., 2012, 287(36), 30426-30435.
[http://dx.doi.org/10.1074/jbc.M112.388587] [PMID: 22798071]
[62]
Yarbrough, D.K.; Hagerman, E.; Eckert, R.; He, J.; Choi, H.; Cao, N.; Le, K.; Hedger, J.; Qi, F.; Anderson, M.; Rutherford, B.; Wu, B.; Tetradis, S.; Shi, W. Specific binding and mineralization of calcified surfaces by small peptides. Calcif. Tissue Int., 2010, 86(1), 58-66.
[http://dx.doi.org/10.1007/s00223-009-9312-0] [PMID: 19949943]
[63]
Sun, Y.; Ye, X.; Cai, M.; Liu, X.; Xiao, J.; Zhang, C.; Wang, Y.; Yang, L.; Liu, J.; Li, S.; Kang, C.; Zhang, B.; Zhang, Q.; Wang, Z.; Hong, A.; Wang, X. Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery. ACS Nano, 2016, 10(6), 5759-5768.
[http://dx.doi.org/10.1021/acsnano.5b07828] [PMID: 27176123]
[64]
Zhang, Y.; Lai, B.S.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 941.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[65]
Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol. Adv., 2019, 37(1), 28-50.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.001] [PMID: 30408510]
[66]
Liang, C.; Guo, B.; Wu, H.; Shao, N.; Li, D.; Liu, J.; Dang, L.; Wang, C.; Li, H.; Li, S.; Lau, W.K.; Cao, Y.; Yang, Z.; Lu, C.; He, X.; Au, D.W.; Pan, X.; Zhang, B.T.; Lu, C.; Zhang, H.; Yue, K.; Qian, A.; Shang, P.; Xu, J.; Xiao, L.; Bian, Z.; Tan, W.; Liang, Z.; He, F.; Zhang, L.; Lu, A.; Zhang, G. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med., 2015, 21(3), 288-294.
[http://dx.doi.org/10.1038/nm.3791] [PMID: 25665179]
[67]
Motamedian, S.R.; Hosseinpour, S.; Ahsaie, M.G.; Khojasteh, A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J. Stem Cells, 2015, 7(3), 657-668.
[http://dx.doi.org/10.4252/wjsc.v7.i3.657] [PMID: 25914772]
[68]
Winkler, T.; Sass, F.A.; Duda, G.N.; Schmidt-Bleek, K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res., 2018, 7(3), 232-243.
[http://dx.doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1] [PMID: 29922441]
[69]
Tatullo, M.; Marrelli, M.; Paduano, F. The regenerative medicine in oral and maxillofacial surgery: The most important innovations in the clinical application of mesenchymal stem cells. Int. J. Med. Sci., 2015, 12(1), 72-77.
[http://dx.doi.org/10.7150/ijms.10706] [PMID: 25552921]
[70]
Kariem, H.; Pastrama, M-I.; Roohani-Esfahani, S.I.; Pivonka, P.; Zreiqat, H.; Hellmich, C. Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theory. Mater. Sci. Eng. C, 2015, 46, 553-564.
[http://dx.doi.org/10.1016/j.msec.2014.10.072] [PMID: 25492021]
[71]
Gupta, P.; Adhikary, M. M, J.C.; Kumar, M.; Bhardwaj, N.; Mandal, B.B. Biomimetic, osteoconductive non-mulberry silk fiber reinforced tricomposite scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces, 2016, 8(45), 30797-30810.
[http://dx.doi.org/10.1021/acsami.6b11366] [PMID: 27783501]
[72]
Smith, B.D.; Grande, D.A. The current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol., 2015, 11(4), 213-222.
[http://dx.doi.org/10.1038/nrrheum.2015.27] [PMID: 25776947]
[73]
Zhang, X-Y.; Fang, G.; Zhou, J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: A review. Materials (Basel), 2017, 10(1), 50.
[http://dx.doi.org/10.3390/ma10010050] [PMID: 28772411]
[74]
Milovac, D.; Gamboa-Martínez, T.C.; Ivankovic, M.; Gallego, F.G.; Ivankovic, H. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: In vitro cell culture studies. Mater. Sci. Eng. C, 2014, 42, 264-272.
[http://dx.doi.org/10.1016/j.msec.2014.05.034] [PMID: 25063118]
[75]
Bai, H.; Walsh, F.; Gludovatz, B.; Delattre, B.; Huang, C.; Chen, Y.; Tomsia, A.P.; Ritchie, R.O. Bioinspired hydroxyapatite/poly (methyl methacrylate) composite with a nacre‐mimetic architecture by a bidirectional freezing method. Adv. Mater., 2016, 28(1), 50-56.
[http://dx.doi.org/10.1002/adma.201504313] [PMID: 26554760]
[76]
Zhang, J.; Liu, H.; Ding, J-X.; Wu, J.; Zhuang, X-L.; Chen, X-S.; Wang, J-C.; Yin, J-B.; Li, Z-M. Engineering. High-pressure compression-molded porous resorbable polymer/hydroxyapatite composite scaffold for cranial bone regeneration. ACS Biomater. Sci. Eng., 2016, 2, 1471-1482.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00202]
[77]
Domingos, M.; Gloria, A.; Coelho, J.; Bartolo, P.; Ciurana, J. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proc. Inst. Mech. Eng. H, 2017, 231(6), 555-564.
[http://dx.doi.org/10.1177/0954411916680236] [PMID: 28056713]
[78]
J, Z.; B, O.; M, S.; G, S.T.; N, H. Mechanical and morphological description of human acellular dura mater as a scaffold for surgical reconstruction. J. Mech. Behav. Biomed. Mater., 2019, 96, 38-44.
[http://dx.doi.org/10.1016/j.jmbbm.2019.04.035] [PMID: 31029993]
[79]
Md Saad, A.P.; Prakoso, A.T.; Sulong, M.A.; Basri, H.; Wahjuningrum, D.A.; Syahrom, A. Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold. Biomech. Model. Mechanobiol., 2019, 18(3), 797-811.
[http://dx.doi.org/10.1007/s10237-018-01115-z] [PMID: 30607641]
[80]
Mondal, S.; Hoang, G.; Manivasagan, P.; Moorthy, M.S.; Nguyen, T.P.; Phan, T.T.V.; Kim, H.H.; Kim, M.H.; Nam, S.Y.; Oh, J. Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceram. Int., 2018, 44, 15735-15746.
[http://dx.doi.org/10.1016/j.ceramint.2018.05.248]
[81]
Mufamadi, M.S.; Kumar, P.; du Toit, L.C.; Choonara, Y.E.; Obulapuram, P.K.; Modi, G.; Naidoo, D.; Iyuke, S.E.; Pillay, V. Liposome-embedded, polymeric scaffold for extended delivery of galantamine. J. Drug Deliv. Sci. Technol., 2019, 50, 255-265.
[http://dx.doi.org/10.1016/j.jddst.2019.02.001]
[82]
Zhu, S.; Li, S.; Escuin-Ordinas, H.; Dimatteo, R.; Xi, W.; Ribas, A.; Segura, T. Accelerated wound healing by injectable star poly(ethylene glycol)-b-poly(propylene sulfide) scaffolds loaded with poorly water-soluble drugs. J. Control. Release, 2018, 282, 156-165.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.006] [PMID: 29751029]
[83]
Yoo, H.S.; Kim, T.G.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev., 2009, 61(12), 1033-1042.
[http://dx.doi.org/10.1016/j.addr.2009.07.007] [PMID: 19643152]
[84]
Butscher, A.; Bohner, M.; Roth, C.; Ernstberger, A.; Heuberger, R.; Doebelin, N.; von Rohr, P.R.; Müller, R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater., 2012, 8(1), 373-385.
[http://dx.doi.org/10.1016/j.actbio.2011.08.027] [PMID: 21925623]
[85]
Kim, H.; Kim, H.W.; Suh, H. Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells. Biomaterials, 2003, 24(25), 4671-4679.
[http://dx.doi.org/10.1016/S0142-9612(03)00358-2] [PMID: 12951010]
[86]
Cui, H.; Zhu, W.; Holmes, B.; Zhang, L.G. Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv. Sci. (Weinh.), 2016, 3(8)1600058
[http://dx.doi.org/10.1002/advs.201600058] [PMID: 27818910]
[87]
Farto-Vaamonde, X.; Auriemma, G.; Aquino, R.P.; Concheiro, A.; Alvarez-Lorenzo, C. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. Eur. J. Pharm. Biopharm., 2019, 141, 100-110.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.018] [PMID: 31112767]
[88]
Carragee, E.J.; Hurwitz, E.L.; Weiner, B.K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: Emerging safety concerns and lessons learned. Spine J., 2011, 11(6), 471-491.
[http://dx.doi.org/10.1016/j.spinee.2011.04.023] [PMID: 21729796]
[89]
Cook, A.D.; Hrkach, J.S.; Gao, N.N.; Johnson, I.M.; Pajvani, U.B.; Cannizzaro, S.M.; Langer, R. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. J. Biomed. Mater. Res., 1997, 35(4), 513-523.
[http://dx.doi.org/10.1002/(SICI)1097-4636(19970615)35:4<513:AID-JBM11>3.0.CO;2-C] [PMID: 9189829]
[90]
Kim, H-W.; Knowles, J.C.; Kim, H-E. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic vancomycin release. J. Mater. Sci. Mater. Med., 2005, 16(3), 189-195.
[http://dx.doi.org/10.1007/s10856-005-6679-y] [PMID: 15744609]
[91]
Francis, L.; Meng, D.; Knowles, J.C.; Roy, I.; Boccaccini, A.R. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Acta Biomater., 2010, 6(7), 2773-2786.
[http://dx.doi.org/10.1016/j.actbio.2009.12.054] [PMID: 20056174]
[92]
Mohammadi, M.; Alibolandi, M.; Abnous, K.; Salmasi, Z.; Jaafari, M.R.; Ramezani, M. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. Nanomedicine (Lond.), 2018, 14(7), 1987-1997.
[http://dx.doi.org/10.1016/j.nano.2018.06.001] [PMID: 29933024]
[93]
Sarkar, N.; Bose, S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces, 2019, 11(19), 17184-17192.
[http://dx.doi.org/10.1021/acsami.9b01218] [PMID: 30924639]
[94]
Chang, B.; Ahuja, N.; Ma, C.; Liu, X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater. Sci. Eng. Rep., 2017, 111, 1-26.
[http://dx.doi.org/10.1016/j.mser.2016.11.001] [PMID: 28649171]
[95]
Tan, H.; Marra, K.G. Injectable, biodegradable hydrogels for tissue engineering applications. Materials (Basel), 2010, 3, 1746-1767.
[http://dx.doi.org/10.3390/ma3031746]
[96]
Moreira, C.D.; Carvalho, S.M.; Mansur, H.S.; Pereira, M.M. Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater. Sci. Eng. C, 2016, 58, 1207-1216.
[http://dx.doi.org/10.1016/j.msec.2015.09.075] [PMID: 26478423]
[97]
Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci., 2019, 267, 47-61.
[http://dx.doi.org/10.1016/j.cis.2019.03.002] [PMID: 30884359]
[98]
Whitely, M.; Cereceres, S.; Dhavalikar, P.; Salhadar, K.; Wilems, T.; Smith, B.; Mikos, A.; Cosgriff-Hernandez, E. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185, 194-204.
[http://dx.doi.org/10.1016/j.biomaterials.2018.09.027] [PMID: 30245387]
[99]
Ginebra, M-P.; Traykova, T.; Planell, J.A. Calcium phosphate cements as bone drug delivery systems: A review. J. Control. Release, 2006, 113(2), 102-110.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.007] [PMID: 16740332]
[100]
Kyllönen, L.; D’Este, M.; Alini, M.; Eglin, D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater., 2015, 11, 412-434.
[http://dx.doi.org/10.1016/j.actbio.2014.09.006] [PMID: 25218339]
[101]
Shen, S-C.; Ng, W.K.; Dong, Y-C.; Ng, J.; Tan, R.B.H. Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater. Sci. Eng. C, 2016, 58, 233-241.
[http://dx.doi.org/10.1016/j.msec.2015.08.011] [PMID: 26478307]
[102]
Ayre, W.N.; Birchall, J.C.; Evans, S.L.; Denyer, S.P. A novel liposomal drug delivery system for PMMA bone cements. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(8), 1510-1524.
[http://dx.doi.org/10.1002/jbm.b.33488] [PMID: 26256271]
[103]
Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G-M.; Choi, H.Y.; Cho, S-G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1)E120
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[104]
von Roemeling, C.; Jiang, W.; Chan, C.K.; Weissman, I.L.; Kim, B.Y.S. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol., 2017, 35(2), 159-171.
[http://dx.doi.org/10.1016/j.tibtech.2016.07.006] [PMID: 27492049]
[105]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[106]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1, 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy