Photoactivatable Platinum Complexes

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 16, 12 Issues, 2016


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Photoactivatable Platinum Complexes



Anti-Cancer Agents in Medicinal Chemistry, 7(1): 75-93.

Author(s): Patrick J. Bednarski, Fiona S. Mackay and Peter J Sadler.

Affiliation: Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald,17487 Greifswald, Germany.

Abstract

The development of photoactivatable prodrugs of platinum-based antitumor agents is aimed at increasing the selectivity and hence lowering toxicity of this important class of antitumor drugs. These drugs could find use in treating localized tumors accessible to laser-based fiber-optic devices. PtIV complexes appeared attractive because these octahedral complexes are usually substitution inert and require reduction to the PtII species to become cytotoxic. Based on the knowledge of PtIV photochemistry, Pt IV analogs of cisplatin, [Pt(en)Cl2] and transplatin were designed, synthesized and investigated for their ability to be photoreduced to cytotoxic PtII species. Two classes of photoactivatable Pt complexes have been looked at thus far: diiodo-PtIV and diazido-Pt IV diam(m)ine complexes. The first generation, diiodo-PtIV complexes, represented by cis, trans-[Pt(en)(I)2(OAc)2], react to visible light by binding irreversibly to DNA and forming adducts with 5-GMP in the same manner as [Pt(en)Cl2]. Furthermore, the photolysis products are cytotoxic to human cancer cells in vitro. However, these complexes are too reactive towards biological thiols (i.e., glutathione), which rapidly reduced them to cytotoxic PtII species, thus making them unsuitable as drugs. The second generation, diazido-PtIV complexes, represented by cis, trans, cis-[Pt(N3)2(OH)2(NH3)2] and cis, trans-[Pt(en)(N3)2(OH)2], are also photosensitive, binding irreversibly to DNA and forming similar products with DNA and 5-GMP in the presence of light as the respective PtII complexes. However, they are stable to glutathione and thus show very low dark cytotoxicity. Light of lirr = 366 nm activates both complexes to cytotoxic species that effectively kill cancer cells by destroying their nuclei, leaving behind shrunken cell ghosts. Interestingly, the all-trans analog, trans, trans, trans-[Pt(N3)2(OH)2(NH3)2] is non-toxic to HaCaT keratinocytes in the dark, but as active as cisplatin in the light. These studies show that photoactivatable PtIV antitumor agents represent a promising area for new drug development.

Keywords:

Platinum complexes, cisplatin, azides, light, photoactivation, photochemistry, phototherapy, cancer therapy.



Download Free Order Reprints Order Eprints Rights and Permissions




Article Details

Volume: 7
Issue Number: 1
First Page: 75
Last Page: 93
Page Count: 19
DOI: 10.2174/187152007779314053
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science