Promotion of Optimized Protein Therapy by Bioconjugation as a Polymeric DDS

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 16, 12 Issues, 2016

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Promotion of Optimized Protein Therapy by Bioconjugation as a Polymeric DDS

Anti-Cancer Agents in Medicinal Chemistry, 6(3): 251-258.

Author(s): Yasuhiro Abe, Hiroko Shibata, Haruhiko Kamada, Shin-Ichi Tsunoda, Yasuo Tsutsumi and Shinsaku Nakagawa.

Affiliation: Laboratory of PharmaceuticalProteomics (LPP), National Institute of Biomedical Innovation (NiBio), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.


In recent years, clinical applications of recombinantly produced bioactive proteins such as cytokines have attracted attention. However, since these recombinant proteins are rather unstable in vivo, their clinical use as therapeutic agents requires frequent administration at a high dosage. This regimen disrupts homeostasis and results in severe side effects. To overcome these problems, bioactive proteins have been conjugated with water-soluble synthetic (WSS) polymeric carriers. Chemical modification of a protein with a WSS polymeric carrier (bioconjugation) regulates tissue distribution, resulting in a selective increase in its desirable therapeutic effects and a decrease in undesirable side effects. Among several drug delivery system (DDS) technologies, bioconjugation has been recognized as one of the most efficient methods for improving therapeutic potency of proteins. However, for further enhancement of the therapeutic potency and safety of conjugated bioactive proteins, more precise regulation of the in vivo behavior of each protein is necessary for selective expression of its therapeutic effect. Therefore, alternative WSS polymeric modifiers in which new functions such as targeting and controlled release of drugs can be added are required for further development of bioconjugated drugs. Recently, we have synthesized a novel polymeric drug carrier, poly(vinylpyrrolidone-co-dimethyl maleic anhydride) [PVD], which was a powerful candidate drug carrier for cancer therapy. In this review, we introduce useful information that enabled us to design polymeric drug carriers and their application for protein therapy.


Polyethylene glycol (PEG), bioconjugation, drug delivery system (DDS), polyvinylpyrrolidone (PVP), poly(vinylpyrrolidone-co-dimethyl maleic anhydride) [PVD], cancer therapy.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 6
Issue Number: 3
First Page: 251
Last Page: 258
Page Count: 8
DOI: 10.2174/187152006776930864
Price: $58

Related Journals

Webmaster Contact: Copyright © 2016 Bentham Science