Identification and Characterization of the Biosynthetic Gene Cluster of Thiolutin, a Tumor Angiogenesis Inhibitor, in Saccharothrix algeriensis NRRL B-24137

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 16, 12 Issues, 2016


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Identification and Characterization of the Biosynthetic Gene Cluster of Thiolutin, a Tumor Angiogenesis Inhibitor, in Saccharothrix algeriensis NRRL B-24137



Anti-Cancer Agents in Medicinal Chemistry, 15(3): 277-284.

Author(s): Sheng Huang, Ming Him Tong, Zhiwei Qin, Zixin Deng, Hai Deng and Yi Yu.

Affiliation: Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071 P. R. China.

Abstract

In this study, a new dithiolopyrrolone biosynthetic pathway was identified in Saccharothrix algeriensis NRRL B-24137, which was reported to produce a variety of dithiolopyrrolone natural products including thiolutin, a potential drug candidate for tumor angiogenesis inhibition. Bioinformatics analysis of the cluster revealed that it contains all the essential genes for holothin core biosynthesis and several other auxiliary genes. Interestingly, heterologous expression of the gene cluster in Streptomyces albus only induced the production of holomycin, implying that the gene responsible for the N4-methylation and the gene(s) involved in the formation of various acylated chains on N7 position of the holothin may locate outside the gene cluster. Incubation of holomycin with S-adenosyl-L-methionine (SAM) in the cell-free extract of Sa. algeriensis resulted in the production of thiolutin, suggesting that the N4-methyl group of thiolutin is originated from SAM, and the N4-methylation could be in the late stage of biosynthesis of thiolutin type dithiolopyrrolones. An evolution-based model for biosynthesis of thiolutin and its analogs was further proposed based on these results.




Keywords:

Saccharothrix algeriensis, thiolutin, dithiolopyrrolone, biosynthesis, heterologous expression.



Purchase Online Order Reprints Order Eprints Rights and Permissions




Article Details

Volume: 15
Issue Number: 3
First Page: 277
Last Page: 284
Page Count: 8
DOI: 10.2174/1871520614666141027145200
Price: $58
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science