The Role of Mesothelin in Tumor Progression and Targeted Therapy

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 16, 12 Issues, 2016


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

The Role of Mesothelin in Tumor Progression and Targeted Therapy



Anti-Cancer Agents in Medicinal Chemistry, 13(2): 276-280.

Author(s): Zhewei Tang, Min Qian and Mitchell Ho.

Affiliation: Antibody Therapy Section, Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5002C, Bethesda, MD 20892-4264, USA.

Abstract

Mesothelin, a glycosylphosphatidylinositol (GPI) anchored cell surface protein, is a potential target for antibody-based cancer therapy due to its high expression in mesothelioma, ovarian cancer, pancreatic cancer, cholangiocarcinoma and other cancers. The SS1P immunotoxin and MORAb-009 (amatuximab), a chimeric monoclonal antibody, are currently being evaluated in clinical trials. In this review, we discuss the role of mesothelin in cancer progression and provide new insights into mesothelin-targeted cancer therapy. Recent studies highlight three mechanisms by which mesothelin plays a role in cancer progression. First, mesothelin may aid in the peritoneal implantation and metastasis of tumors through its interaction with mucin MUC16 (also known as CA125). Second, mesothelin may promote cancer cell survival and proliferation via the NF-κB signaling pathway. Finally, mesothelin expression promotes resistance to certain chemotherapy drugs such as TNF-α, paclitaxel, and a combination of platinum and cyclophosphamide. However, its cancerspecific expression makes mesothelin a potential target for monoclonal antibody therapy. New human monoclonal antibodies targeting mesothelin have been isolated by phage display technology and may provide opportunities for novel cancer therapy.

Keywords:

Antibody dependent cell mediated cytotoxicity/ADCC, Apoptosis, Cell surface proteins, Cell survival/proliferation, Complement dependent cytotoxicity/CDC, Human monoclonal antibodies, Immunotoxin, Mesothelin, MORAb-009/amatuximab, MUC16/CA125, NF-κB, PI3K/Akt, SS1P.



Purchase Online Order Reprints Order Eprints Rights and Permissions




Article Details

Volume: 13
Issue Number: 2
First Page: 276
Last Page: 280
Page Count: 5
DOI: 10.2174/1871520611313020014
Price: $58
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science