Peptide Receptor Radionuclide Therapy with Somatostatin Analogues in Neuroendocrine Tumors

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Peptide Receptor Radionuclide Therapy with Somatostatin Analogues in Neuroendocrine Tumors

Anti-Cancer Agents in Medicinal Chemistry, 12(5): 526-542.

Author(s): Giampiero Giovacchini, Guillaume Nicolas and Flavio Forrer.

Affiliation: Department of Radiology and Nuclear Medicine University Hospital Basel 4031 Basel Switzerland.


Neuroendocrine tumors (NETs) are rare tumors with variable malignant behavior. The majority of NETs express increased levels of somatostatin (SST) receptors, particularly SST2 receptors. Radiolabeled peptides specific for the SST2 receptors may be used for diagnosis of NETs and for peptide receptor radionuclide therapy (PRRT). [111In-DTPA0]-octreotide has been the first peptide used for PRRT. This radiolabeled peptide, emitting Auger electrons, often induced symptomatic relief, but objective morphological responses were rarely documented. After the introduction of the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) other peptides, primarily [DOTA(0),Tyr(3)]octreotate (DOTATATE) and [DOTA(0),Tyr(3)]octreotide (DOTATOC) were labeled with 90Y or 177Lu and used for therapy applications. The rate of objective response obtained with these radiolabeled peptides ranges between 6% and 46%, owing to differences in inclusion criteria adopted in different studies, length and type of therapy, and criteria of evaluation of the response. The present data in the literature do not allow defining the most suitable peptide and radionuclide for the treatment of NETs. Instead emerging evidence indicates that a combination of nuclides with different physical characteristics might be more effective than the use of a single nuclide. Kidney and bone marrow toxicity are the limiting factors for PRRT. Mild toxicity is often encountered while severe toxicity is rarer. Toxicity could be reduced and therapeutic efficacy enhanced by patient-specific dosimetry. Future directions include different issues of PRRT, such as defining the most suitable treatment scheme, evaluation of new peptides with different affinity profiles to other SST receptor subtypes, and reduction of toxicity.


Neuroendocrine tumors, Peptide receptor radionuclide therapy, Somatostatin receptors, Epidemiology, Diagnosis, Radiopharmaceuticals, Radionuclides, Plane waves, octreotide, spleen.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 12
Issue Number: 5
First Page: 526
Last Page: 542
Page Count: 17
DOI: 10.2174/187152012800617803
Price: $58
Global Biotechnology Congress 2017Drug Discovery and Therapy World Congress 2017

Related Journals

Related eBooks

Webmaster Contact: Copyright © 2017 Bentham Science