Synthesis of Cis-Fused Pyran Indolocarbazole Derivatives that Inhibit FLT3 Kinase and the DNA Damage Kinase, Checkpoint Kinase 1

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Synthesis of Cis-Fused Pyran Indolocarbazole Derivatives that Inhibit FLT3 Kinase and the DNA Damage Kinase, Checkpoint Kinase 1

Anti-Cancer Agents in Medicinal Chemistry, 12(3): 194-201.

Author(s): Francoise M. Perron-Sierra, Nathalie Kucharkzyk, Celine Boucley, Christel Guyard-Daumas, Sophie Sciberras, Christine Fouache, Sabine Plantier, Aurelie Studeny, Celine Bossard, Patrick J. Casara and Roy M Golsteyn.

Affiliation: Cancer Cell Laboratory,Department of Biological Sciences, University of Lethbridge, Lethbridge,Alberta, T1K 3M4 Canada.


Protein kinases are important enzymes in solid tumour and leukaemia pathologies. Their structures are well understood at the atomic level and their key role in the progression of certain cancers makes them valuable targets for anti-cancer therapy. Through medicinal chemical approaches, we developed an efficient preparative stereospecific synthesis of N12, N13 pyran-bridged indolocarbazoles that opens access to functional diversity within this previously challenging series. We focused upon the indolocarbazole class of chemical inhibitors, which includes S27888, an inhibitor we previously identified. We used biochemical and cell-based assays to identify small molecule inhibitors of Checkpoint kinase 1 (Chk1), a serine/threonine protein kinase that is activated when cancer cells are treated with genotoxic agents. These compounds show a promising inhibitory profile on Chk1. Furthermore, these compounds are active against FLT3, which is a tyrosine kinase that is frequently activated in human leukaemias. These data suggest that this chemical class may provide a source of therapeutic compounds for a broad range of human cancers.


Checkpoint kinase 1, Chk1, FLT3, Checkpoint adaptation, Genotoxic agents, HT29 cells, Indolocarbazoles, Protein kinases, Stereospecific synthesis, antiproliferative properties.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 12
Issue Number: 3
First Page: 194
Last Page: 201
Page Count: 8
DOI: 10.2174/187152012800228823
Price: $58
Global Biotechnology Congress 2017Drug Discovery and Therapy World Congress 2017

Related Journals

Related eBooks

Webmaster Contact: Copyright © 2017 Bentham Science