Recent Advances in Hsp90 Inhibitors as Antitumor Agents

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 16, 12 Issues, 2016


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Recent Advances in Hsp90 Inhibitors as Antitumor Agents



Anti-Cancer Agents in Medicinal Chemistry, 8(7): 761-782.

Author(s): S. Messaoudi, J. F. Peyrat, J. D. Brion and M Alami.

Affiliation: Univ. Paris-Sud, CNRS, BioCIS-UMR 8076, Laboratoire de Chimie Therapeutique, Faculte de Pharmacie, IFR 141, 5 rue J.-B. Clement, Chatenay-Malabry, F-92296, France.

Abstract

One promising therapeutic strategy for treating cancer is to specifically target signal transduction pathways that have a key role in oncogenic transformation and malignant progression. Hsp90 is an emerging therapeutic target of interest for the treatment of cancer. It is responsible for modulating cellular response to stress by maintaining the function of numerous signalling proteins – known as ‘client proteins’ – that are associated with cancer cell survival and proliferation. Many cancers result from specific mutations in, or aberrant expression of, these client proteins. Small molecule Hsp90 inhibitors bind to the ATP binding pocket, inhibit chaperone function and could potentially result in cytostasis or cell death. Consequently, many client proteins are targeted for degradation via the ubiquitin-proteasome pathway including receptor and non receptor kinases (Erb-B2, epidermal growth factor receptor, and Src family kinases), serine/threonine kinases (c-Raf-1 and Cdk4), steroid hormone receptors (androgen and estrogen), and apoptosis regulators such as mutant p53. Inhibition of Hsp90 function has also proven effective in killing cancer cells that have developed resistance to targeted therapies such as kinase inhibitors. This review is intended to update recent developments in new Hsp90 inhibitors as antitumors agents, the design, biological evaluation and their clinical trials studies.

Keywords:

Heat shock protein 90 (Hsp90), co-chaperone (client proteins), antitumor agents, apoptosis, proteasome.



Purchase Online Order Reprints Order Eprints Rights and Permissions




Article Details

Volume: 8
Issue Number: 7
First Page: 761
Last Page: 782
Page Count: 22
DOI: 10.2174/187152008785914824
Price: $58
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science