Targeted Tumor Diagnosis and Therapy with Peptide Hormones as Radiopharmaceuticals

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Targeted Tumor Diagnosis and Therapy with Peptide Hormones as Radiopharmaceuticals

Anti-Cancer Agents in Medicinal Chemistry, 8(2): 186-199.

Author(s): Annette G. Beck-Sickinger and Irfan Ullah Khan.

Affiliation: Institute of Biochemistry,Faculty of Bioscience, Pharmacy and Psychology, Leipzig University,Bruderstr. 34, 04103 Leipzig, Germany.


Regulatory, receptor-binding peptides could be considered as future agents of choice for diagnostic imaging and therapy of cancers because their receptors are overexpressed in various human cancer cells. Peptides exhibit several advantages over classical macromolecules or drugs, e.g., from the chemical point of view: they are easy to synthesize and can withstand harsh chemical conditions which are required for chelation and radiolabeling. From the biological point of view, peptides exhibit fast blood clearance and high target- to-background ratios through receptor-mediated internalization. Furthermore, they are effective carriers for the delivery of cytotoxic drugs to target the affected tissues, thus avoiding normal cells from non-specific toxicity of anticancer agents. Owing to these features, radiolabeled receptor-binding peptides have emerged as a new class of radiopharmaceuticals for tumor scintigraphy and, more recently, to treat cancers by using peptide receptor radiation therapy (PRRT). The challenge in this scenario is to modify bioactive peptide hormones and to synthesize new sequences with improved metabolic stability without affecting the receptor binding properties after labeling with a chelator for incorporation of a radiometal. At the present time, however, the radiolabeled cholecystokinin-2 (CCK2)- and octreotide somatostatin-receptor selective analogs are the only examples that are being used in clinical practice. Other peptides such as neurotensin-, substance P-, gastrin-releasing peptide-, glucagons-like peptide 1 and neuropeptide Y (NPY) are under investigation to target breast, prostate, ovary, pancreas and brain tumors, in which overexpression of these peptide receptors has been reported. Among these peptides, neuropeptide Y (NPY) seems to be a very promising candidate because the change in its subtype receptor expression correlates with neoplastic changes. Here, we summarize the variety of experiences gained in the development of various peptide analogs, chelator/ radiolabeling techniques for applications in tumor imaging and therapy.


Radiolabeled peptides, metabolic stability, tumor diagnosis/therapy.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 8
Issue Number: 2
First Page: 186
Last Page: 199
Page Count: 14
DOI: 10.2174/187152008783497046
Price: $58

Related Journals

Webmaster Contact: Copyright © 2016 Bentham Science