Radionuclide Liver Cancer Therapies: From Concept to Current Clinical Status

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Radionuclide Liver Cancer Therapies: From Concept to Current Clinical Status

Anti-Cancer Agents in Medicinal Chemistry, 7(4): 441-459.

Author(s): Maarten A.D. Vente, Monique G.G. Hobbelink, Alfred D. van het Schip, Bernard A. Zonnenberg and Johannes FW Nijsen.

Affiliation: Department of Nuclear Medicine,University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.


Primary and secondary liver cancer have longtime been characterized by an overall poor prognosis since the majority of patients are not candidates for surgical resection with curative intent, systemic chemotherapy alone has rarely resulted in long-term survival, and the role of conventional external beam radiation therapy has traditionally been limited due to the relative sensitivity of the liver parenchyma to radiation. Therefore, a host of new treatment options have been developed and clinically introduced, including radioembolization techniques, which are the main topic of this paper. In these locoregional treatments liver malignancies are passively targeted because, unlike the normal liver, the blood supply of intrahepatic tumors is almost uniquely derived from the hepatic artery. These internal radiation techniques consist of injecting either yttrium-90 (90Y) microspheres, or iodine-131 (131I) or rhenium-188 (188Re) labeled lipiodol into the hepatic artery. Radioactive lipiodol is used exclusively for treatment of primary liver cancer, whereas 90Y microsphere therapy is applied for treatment of both primary and metastatic liver cancers. Favorable clinical results have been achieved, particularly when 90Y microspheres were used in conjunction with systemic chemotherapy. The main advantages of radiolabeled lipiodol treatment are that it is relatively inexpensive (especially 188Re-HDD-lipiodol) and that the administration procedure is somewhat less complex than that of the microspheres. Holmium-166 (166Ho) loaded poly(L-lactic acid) microspheres have also been developed and are about to be clinically introduced. Since 166Ho is a combined beta-gamma emitter and highly paramagnetic as well, it allows for both (quantitative) scintigraphic and magnetic resonance imaging.


Colorectal liver metastases, hepatocellular carcinoma, microspheres, lipiodol, iodine-131, yttrium-90, rhenium-188, holmium-166.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 7
Issue Number: 4
First Page: 441
Last Page: 459
Page Count: 19
DOI: 10.2174/187152007781058569
Price: $58
Global Biotechnology Congress 2017Drug Discovery and Therapy World Congress 2017

Related Journals

Related eBooks

Webmaster Contact: Copyright © 2017 Bentham Science