Anti-Cancer Activities of 1,4-Naphthoquinones: A QSAR Study

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Anti-Cancer Activities of 1,4-Naphthoquinones: A QSAR Study

Anti-Cancer Agents in Medicinal Chemistry, 6(5): 489-499.

Author(s): Rajeshwar P Verma.

Affiliation: Department of Chemistry,Pomona College, Claremont, CA 91711, USA.


Quinone moieties are present in many drugs such as anthracyclines, daunorubicin, doxorubicin, mitomycin, mitoxantrones and saintopin, which are used clinically in the therapy of solid cancers. The cytotoxic effects of these quinones are mainly due to the following two factors: (i) inhibition of DNA topoisomerase-II and, (ii) formation of semiquinone radical that can transfer an electron to oxygen to produce super oxide, which is catalyzed by flavoenzymes such as NADPH-cytochrome-P-450 reductase. Both semiquinone and super oxide of quinones can generate the hydroxyl radical, which is the cause of DNA strand breaks. 1,4-naphthoquinone contains two quinone groups that have the ability to accept one or two electrons to form the corresponding radical anion or di-anion species. It is probably dependent on the quinone redox cycling that yields "reactive oxygen species" (ROS) as well as arylation reactions, which is common to quinones for biological relevance. In the present review, an attempt has been made to collect the cytotoxicity data on different series of 1,4-naphthoquinones against four different cancer cell lines that are L1210, A549, SNU-1, and K562, which were acquired by using identical method, and has been discussed in terms of QSAR (quantitative structure-activity relationships) to understand the chemical-biological interactions. QSAR results have shown that the cytotoxic activities of 1,4- naphthoquinones depend largely on their hydrophobicity.


Hydrophobicity, Molar refractivity, 1,4-Naphthoquinones, Quantitative structure-activity relationships.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 6
Issue Number: 5
First Page: 489
Last Page: 499
Page Count: 11
DOI: 10.2174/187152006778226512
Price: $58
Global Biotechnology Congress 2017Drug Discovery and Therapy World Congress 2017

Related Journals

Related eBooks

Webmaster Contact: Copyright © 2017 Bentham Science