Mechanisms of Cancer Prevention by Green and Black Tea Polyphenols

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 16, 12 Issues, 2016


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Mechanisms of Cancer Prevention by Green and Black Tea Polyphenols



Anti-Cancer Agents in Medicinal Chemistry, 6(5): 389-406.

Author(s): Lisa Ann Beltz, Diana Kay Bayer, Amber Lynn Moss and Ira Mitchell Simet.

Affiliation: Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614, USA.

Abstract

Drinking green tea is associated with decreased frequency of cancer development. This review outlines the wide range of mechanisms by which epigallocatechin gallate (ECGC) and other green and black tea polyphenols inhibit cancer cell survival. EGCG suppressed androgen receptor expression and signalling via several growth factor receptors. Cell cycle arrest or apoptosis involved caspase activation and altered Bcl-2 family member expression. EGCG inhibited telomerase activity and led to telomere fragmentation. While at high concentrations polyphenols had pro-oxidative activities, at much lower levels, anti-oxidative effects occurred. Nitric oxide production was reduced by EGCG and black tea theaflavins by suppressing inducible nitric oxide synthase via blocking nuclear translocation of the transcription factor nuclear factor-κB as a result of decreased IκB kinase activity. Polyphenols up- or down-regulated activity of a number of key enzymes, including mitogen-activated protein kinases and protein kinase C, and increased or decreased protein/ mRNA levels, including that of cyclins, oncogenes, and tumor suppressor genes. Metastasis was inhibited via effects on urokinase and matrix metalloproteinases. Polyphenols reduced angiogenesis, in part by decreasing vascular endothelial growth factor production and receptor phosphorylation. Recent work demonstrated that EGCG reduced dihydrofolate reductase activity, which would affect nucleic acid and protein synthesis. It also acted as an aryl hydrocarbon receptor antagonist by directly binding the receptors molecular chaperone, heat shock protein 90. In conclusion, green and black tea polyphenols act at numerous points regulating cancer cell growth, survival, and metastasis, including effects at the DNA, RNA, and protein levels.

Keywords:

Tea polyphenols, epigallocatechin gallate, apoptosis, reactive oxygen species, metastasis, angiogenesis, dihydrofolate reductase, aryl hydrocarbon receptor.



Purchase Online Order Reprints Order Eprints Rights and Permissions




Article Details

Volume: 6
Issue Number: 5
First Page: 389
Last Page: 406
Page Count: 18
DOI: 10.2174/187152006778226468
Price: $58
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science