A Novel Approach to Inhibit Heat Shock Response as Anticancer Strategy by Coumarine Compounds Containing Thiazole Skeleton

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Research Article

A Novel Approach to Inhibit Heat Shock Response as Anticancer Strategy by Coumarine Compounds Containing Thiazole Skeleton

Anti-Cancer Agents in Medicinal Chemistry, 15(7): 916-930.

Author(s): İrfan Koca, Mehmet Gumuş, Aykut Ozgur, Ali Disli and Yusuf Tutar.

Affiliation: Bozok University, Faculty of Arts and Sciences, Department of Chemistry, Yozgat, Turkey., Cumhuriyet University, Faculty of Pharmacy, Basic Sciences Department, Division of Biochemistry, 58140, Sivas, Turkey.


Inhibition of the Hsp90 function is an essential therapeutic approach and several inhibitors were designed as anti-cancer agents. These inhibitors are ATPases and they aim to deregulate Hsp90 folding function. ATPase proteins are common in human metabolism but they form nonspecific targets. Hsp90 functions as dimer with coordinating chaperones. Heat Shock Organizing Protein (Hop) forms a bridge between Hsp90 and Hsp70-Hsp40 complex to form Hsp90-Hsp70 coordination. Perturbing conformational changes of these Hsp proteins, dimer formation, and protein-protein interactions inhibit Hsp90 substrate protein folding function. This approach does not target all ATPase proteins but targets Hsp90 function solely. For this purpose, we designed compounds to block Hsp90 function. Moreover, molecular docking studies as well as competition analysis of the compounds were performed with Hsp90. Novel thiazolyl coumarine compounds were determined as valuable C-terminal Hsp90 inhibitors and provide promising templates for the drug design. Anticancer activities of these novel compounds were tested by employing human colon (DLD-1) and liver cancer (HepG2) cell lines. Thiazolyl coumarine compounds are found to be significant and useful for the treatment of human colon and liver cancer as evidenced by in vitro and in silico results.


Colon cancer, coumarine, heat shock protein 90, liver cancer, thiazole.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 15
Issue Number: 7
First Page: 916
Last Page: 930
Page Count: 15
DOI: 10.2174/1871520615666150407155623
Price: $58

Related Journals

Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science