Baicalin Induces Apoptosis of Gallbladder Carcinoma Cells in vitro via a Mitochondrial-Mediated Pathway and Suppresses Tumor Growth in vivo

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Baicalin Induces Apoptosis of Gallbladder Carcinoma Cells in vitro via a Mitochondrial-Mediated Pathway and Suppresses Tumor Growth in vivo

Anti-Cancer Agents in Medicinal Chemistry, 14(8): 1136-1145.

Author(s): Yi-Jun Shu, Run-Fa Bao, Xiang-Song Wu, Hao Weng, Qian Ding, Yang Cao, Mao-Lan Li, Jia-Sheng Mu, Wen-Guang Wu, Qi-Chen Ding, Tian-Yu Liu, Lin Jiang, Yun-Ping Hu, Zhu-Jun Tan, Peng Wang and Ying-Bin Liu.

Affiliation: Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China.


Baicalin, the main active ingredient in the Scutellaria baicalensis (SB), is prescribed for the treatment of various inflammatory diseases and tumors in clinics in China. In the present study, we evaluated the antitumor activity of baicalin for gallbladder carcinoma and the underlying mechanisms both in vitro and in vivo. Our results indicate that baicalin induced potent growth inhibition, cell cycle arrest, apoptosis and colony-formation inhibition in a dose-dependent manner in vitro. We observed inhibition of NF-κB nuclear translocation, up-regulation of Bax and down-regulation of Bcl-2, as well as increased caspase-3 and caspase-9 expression after baicalin treatment in vitro and in vivo, which indicates that the mitochondrial pathway was involved in baicalin-induced apoptosis. In addition, daily intraperitoneally injection of baicalin (15, 30 and 60 mg/kg) for 21 days significantly inhibited the growth of NOZ cells xenografts in nude mice, which improved the survival of baicalin-treated mice. In summary, baicalin exhibited a significant anti-tumor effect by suppressing cell proliferation, promoting apoptosis, and inducing cell cycle arrest in vitro, and by suppressing tumor growth and improving survival in vivo, which suggested that baicalin represents a novel therapeutic option for gallbladder carcinoma.


Apoptosis, Baicalin, gallbladder carcinoma, mitochondrial-mediated pathway, survival rate, xenograft.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 14
Issue Number: 8
First Page: 1136
Last Page: 1145
Page Count: 10
DOI: 10.2174/1871520614666140223191626
Price: $58

Related Journals

Webmaster Contact: Copyright © 2016 Bentham Science