Cytotoxicity and Apoptosis Induced by a Plumbagin Derivative in Estrogen Positive MCF-7 Breast Cancer Cells

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)


Volume 16, 12 Issues, 2016


Download PDF Flyer




Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Michelle Prudhomme
Universite Blaise Pascal - C.N.R.S
Aubiere Cedex
France


View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Cytotoxicity and Apoptosis Induced by a Plumbagin Derivative in Estrogen Positive MCF-7 Breast Cancer Cells



Anti-Cancer Agents in Medicinal Chemistry, 14(1): 170-180.

Author(s): Sunil Sagar, Luke Esau, Basem Moosa, Niveen M. Khashab, Vladimir B. Bajic and Mandeep Kaur.

Affiliation: Computational Bioscience Research Center (CBRC), Building 2, Level 4, R-4336, King Abdullah University of Science and Technology (KAUST), Thuwal- 23955-6900, Kingdom of Saudi Arabia.

Abstract

Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer.

Keywords:

Anticancer, apoptosis, breast cancer, caspase-3/7, plumbagin.



Download Free Order Reprints Order Eprints Rights and Permissions




Article Details

Volume: 14
Issue Number: 1
First Page: 170
Last Page: 180
Page Count: 11
DOI: 10.2174/18715206113136660369
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2016 Bentham Science