Cytotoxicity and Cell Death Mechanisms Induced by a Novel Bisnaphthalimidopropyl Derivative against the NCI-H460 non-small Lung Cancer Cell Line

ISSN: 1875-5992 (Online)
ISSN: 1871-5206 (Print)

Volume 17, 14 Issues, 2017

Download PDF Flyer

Anti-Cancer Agents in Medicinal Chemistry

Formerly: Current Medicinal Chemistry - Anti-Cancer Agents

This journal supports open access

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 27th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Michelle Prudhomme
Institut de Chimie de Clermont-Ferrand
Université Clermont Auvergne

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 2.722
5 - Year: 2.849

Cytotoxicity and Cell Death Mechanisms Induced by a Novel Bisnaphthalimidopropyl Derivative against the NCI-H460 non-small Lung Cancer Cell Line

Anti-Cancer Agents in Medicinal Chemistry, 13(3): 414-421.

Author(s): Raquel T. Lima, Gemma A. Barron, Joanna A. Grabowska, Giovanna Bermano, Simranjeet Kaur, Nilanjan Roy, M. Helena Vasconcelos and Paul KT Lin.

Affiliation: School of Pharmacy and Life Science, Robert Gordon University, St. Andrew Street, Aberdeen, AB25 1HG, UK.


Some polyamine derivatives, namely the bisnaphthalimidopropyl polyamines (BNIPPs) may have potential as anticancer drugs. Indeed, previous work from some of us had shown that the ability of these molecules to bind to DNA may contribute to their cytotoxicity. However, their precise mode of action has not been fully understood.

In the present work, we report for the first time the effect of the previously synthesised compounds, BNIPDaCHM and NPA, together with a new BNIP derivative (BNIP-3,4-DaDPM) in the in vitro growth of a non-small cell lung cancer cell line (NCI-H460). In addition, for the most potent compound (BNIPDaCHM), its activity as sirtuin inhibitor was investigated in vitro and further confirmed in silico.

Results in the NCI-H460 cells showed that, from the compounds tested, BNIPDaCHM was the most potent (GI50 of 1.3 μM). In addition, a concentration-dependent alteration in the normal NCI-H460 cell cycle profile was observed following treatment with BNIPDaCHM as well as an increase in the sub-G1 peak (suggestive of apoptotis). This effect was further supported by Annexin V/PI staining and by analysing the expression of proteins related to apoptosis (cleaved PARP and Caspase-3) by Western blot. It was also observed that BNIPDaCHM inhibited the activity of SIRT2 in vitro, but not of SIRT1. Accordingly, this compound also caused a small increase in tubulin acetylation in NCI-H460 cells. To determine the binding potential of BNIPDaCHM on hSIRT2 and to further validate its inhibitory action, in silico docking studies were carried out, which revealed that BNIPDaCHM is composed of an entirely new SIRT2- inhibiting structural scaffold. In conclusion, this study indicates that BNIP derivatives with a novel structural backbone, such as BNIPDaCHM, may have potential as building blocks for novel antitumour agents which might selectively bind to hSIRT-2.


Apoptosis, SIRT2 inhibitor, Bisnaphthalimidopropyl derivatives, Anticancer agent, HDAC.

Purchase Online Order Reprints Order Eprints Rights and Permissions

Article Details

Volume: 13
Issue Number: 3
First Page: 414
Last Page: 421
Page Count: 8
DOI: 10.2174/1871520611313030005
Price: $58
Global Biotechnology Congress 2017Drug Discovery and Therapy World Congress 2017

Related Journals

Related eBooks

Webmaster Contact: Copyright © 2017 Bentham Science