The Identification and Biochemical Properties of the Catalytic Specificity of a Serine Peptidase Secreted by Aspergillus fumigatus Fresenius

ISSN: 1875-5305 (Online)
ISSN: 0929-8665 (Print)


Volume 21, 12 Issues, 2014


Download PDF Flyer




Protein & Peptide Letters

Aims & ScopeAbstracted/Indexed in


Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Prof. Ben M. Dunn
Department of Biochemistry and Molecular Biology
University of Florida
College of Medicine
P.O. Box 100245
Gainesville, FL
USA
Email: bdunn@ufl.edu

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 1.735
5 - Year: 1.493

The Identification and Biochemical Properties of the Catalytic Specificity of a Serine Peptidase Secreted by Aspergillus fumigatus Fresenius

Author(s): Ronivaldo Rodrigues da Silva, Renato Cesar Caetano, Debora Nona Okamoto, Lilian Caroline Goncalves de Oliveira, Thiago Carlos Bertolin, Maria Aparecida Juliano, Luiz Juliano, Arthur H. C. de Oliveira, Jose C. Rosae and Hamilton Cabral

Affiliation: Av. do Cafe, s/nº Campus Universitario da USP CEP 14040-903 Ribeirao Preto/Sao Paulo/Brazil.

Abstract

Aspergillus fumigatus is a saprophytic fungus as well as a so-called opportunist pathogen. Its biochemical potential and enzyme production justify intensive studies about biomolecules secreted by this microorganism. We describe the alkaline serine peptidase production, with optimum activity at 50°C and a pH of 7.5 and a reduction in proteolytic activity in the presence of the Al+3 ions. When using intramolecularly quenched fluorogenic substrates, the highest catalytic efficiency was observed with the amino acid leucine on subsite S’3 (60,000 mM-1s-1) and preference to non-polar amino acids on subsite S3. In general, however, the peptidase shows non-specificity on other subsites studied. According to the biochemical characteristics, this peptidase may be an important biocatalyst for the hydrolysis of an enormous variety of proteins and can constitute an essential molecule for the saprophytic lifestyle or invasive action of the opportunistic pathogen. The peptidase described herein exhibits an estimated molecular mass of 33 kDa. Mass spectrometry analysis identified the sequence GAPWGLGSISHK displaying similarities to that of serine peptidase from Aspergillus fumigatus. These data may lead to a greater understanding of the advantageous biochemical potential, biotechnological interest, and trends of this fungus in spite of being an opportunist pathogen.

Keywords: Aspergillus fumigatus, catalytic specificity, intramolecularly quenched fluorogenic substrates, opportunistic pathogen, saprophytic lifestyle, serine peptidase.

Purchase Online Rights and Permissions

  
  



Article Details

Volume: 21
Issue Number: 7
First Page: 663
Last Page: 671
Page Count: 9
DOI: 10.2174/0929866521666140408114646
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science