Design and Docking Studies of Peptide Inhibitors as Potential Antiviral Drugs for Dengue Virus Ns2b/Ns3 Protease

ISSN: 1875-5305 (Online)
ISSN: 0929-8665 (Print)


Volume 21, 12 Issues, 2014


Download PDF Flyer




Protein & Peptide Letters

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 207th of 290 in Biochemistry & Molecular Biology

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Prof. Ben M. Dunn
Department of Biochemistry and Molecular Biology
University of Florida
College of Medicine
P.O. Box 100245
Gainesville, FL
USA
Email: bdunn@ufl.edu

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 1.994
5 - Year: 1.709

Design and Docking Studies of Peptide Inhibitors as Potential Antiviral Drugs for Dengue Virus Ns2b/Ns3 Protease

Author(s): Devadasan Velmurugan, Udhayakumar Mythily and Kutumba Rao

Affiliation: CAS in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai – 600 025.

Abstract

Dengue virus (DENV), one of the members of genus Flavivirus is emerging as a global threat to human health. It had led to the emergence of dengue fever (flu-like illness), dengue shock syndrome, and the most severe dengue hemorrhagic fever (severe dengue with bleeding abnormalities). As Dengue hemorrhage diseases are the life-threatening ones, attempts are being made worldwide to design inhibitors for DENV-2 NS2B-NS3 protease. NS2B/NS3 protease plays a vital role in the replication of dengue virus. The trypsin-like serine protease domain of NS3 contains the functional catalytic triad His-51, Asp-75, and Ser-135 in the N-terminal region. Inhibition of the NS3 protease activity is expected to prevent the propagation of dengue virus. Current drug discovery methods are largely inefficient and thus relatively ineffective in tackling the growing threat to public health presented by emerging and remerging viral pathogens. Recently, there has been a need of interest in peptides and their mimetics as potential antagonists for dengue protease because these small peptides are unlikely to invoke an immune response since they fall below the immunogenic threshold. They are often potent and display fewer toxicity issues than small-molecule compounds as a result of high specificity. This study was conducted to design peptides as enzyme inhibitors of dengue virus NS3 protease through computational approach. Crystallographic structure of dengue protease was retrieved from Protein Data Bank (PDBID: 2FOM) and docked with the peptides and the results are analyzed. From the docking studies reported in this paper, tetrapeptide (Lys-Gly-Pro-Glu), pentapeptide (Ser-Ile-Lys-Phe-Ala) and hexapeptide (Ala-Ile-Lys-Lys-Phe-Ser) with glide energy -70.0 kcal/mol, -72.2 kcal/mol and - 80.4 kcal/mol respectively show promising results which can be considered for further optimization and in vitro studies.

Keywords: Dengue virus, docking, Flavivirus, NS2B/NS3 protease, peptide, replication.

Purchase Online Rights and Permissions

Article Details

Volume: 21
Issue Number: 8
First Page: 815
Last Page: 827
Page Count: 13
DOI: 10.2174/09298665113209990062
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science