Snake Venom Proteins: Development into Antimicrobial and Wound Healing Agents

ISSN: 1875-6298 (Online)
ISSN: 1570-193X (Print)


Volume 11, 4 Issues, 2014


Download PDF Flyer




Mini-Reviews in Organic Chemistry

Aims & ScopeAbstracted/Indexed in


Submit Abstracts Online Submit Manuscripts Online

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 0.826
5 - Year: 1.725

Snake Venom Proteins: Development into Antimicrobial and Wound Healing Agents

Author(s): Ramar Perumal Samy, Jayapal Manikandan, Gautam Sethi, Octavio L. Franco, Josiah C. Okonkwo, Bradley G. Stiles, Vincent T.K. Chow, Ponnampalam Gopalakrishnakone and Mohammed Al Qahtani

Affiliation: Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.

Abstract

Infectious diseases are a significant cause of morbidity and mortality worldwide, accounting for approximately 50% of all deaths in tropical countries and as much as 20% of deaths in the USA. The emergence of multi-drug resistant (MDR) strains makes the risk of these infections even more threatening and an important public health problem thereby increasing need of new agents for fighting pathogens. In this review, the remarkable antibacterial properties possessed by various snake venoms (Crotalide, Elapidae, and Viperidae families) were discussed and in particular phospholipase A2s (PLA2s) that have emerged from various studies as potential in the last few years. Group IIA PLA2s are the most potent among the snake venom (sv)PLA2s against various types of bacteria. Further, antibacterial derivatives from PLA2s, e.g. peptides derived from the C-terminal sequence of Lys49-PLA2s (amino acids 115-129), kill bacteria and cause severe membrane-damaging effects. Mechanisms of binding to the bacterial surface and subsequent killing by peptides are based on positive charge, hydrophobicity, and length. These peptide candidates are easy to design and synthesize in pure form (~95% purity). Such peptides may be potentially useful in the clinic as new antimicrobials for combating infections due to antibiotic-resistant bacteria that include methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus in the near future.

Keywords: Methicillin-resistant Staphylococcus aureus (MRSA), snake venom protein, endogenous antibiotics, Lys49 & Asp49-PLA2, inflammatory cytokines, growth factors, skin, wound healing, transcription factors NF-kB, Cys-rich protein.

Download Free Rights and Permissions

  
  



Article Details

Volume: 11
Issue Number: 1
First Page: 4
Last Page: 14
Page Count: 11
DOI: 10.2174/1570193X1101140402100131
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science