Pharmacological Properties of Novel Cyclic Pentapeptides with µ-opioid Receptor Agonist Activity

ISSN: 1875-6638 (Online)
ISSN: 1573-4064 (Print)


Volume 10, 8 Issues, 2014


Download PDF Flyer




Medicinal Chemistry

Aims & ScopeAbstracted/Indexed in

Ranking and Category:
  • 48th of 59 in Chemistry, Medicinal

Submit Abstracts Online Submit Manuscripts Online

Editor-in-Chief:
Atta-ur-Rahman, FRS
Honorary Life Fellow
Kings College
University of Cambridge
Cambridge
UK
Email: mc@benthamscience.org

View Full Editorial Board

Subscribe Purchase Articles Order Reprints

Current: 1.373
5 - Year: 1.362

Pharmacological Properties of Novel Cyclic Pentapeptides with µ-opioid Receptor Agonist Activity

Author(s): Renata Perlikowska, Justyna Piekielna, Jakub Fichna, Jean Claude do-Rego, Geza Toth, Tomasz Janecki and Anna Janecka

Affiliation: Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.

Abstract

In our previous paper we have reported the synthesis and biological activity of a cyclic analog, Tyr-c(D-Lys- Phe-Phe-Asp)-NH2, based on endomorphin-2 (EM-2) structure. This analog displayed high affinity for the µ -opioid receptor, was much more stable than EM-2 in rat brain homogenate and showed remarkable antinociceptive activity after intracerebroventricular (i.c.v.) injection. Even more importantly, the cyclic analog elicited weak analgesia also after peripheral administration, giving evidence that it was able to cross, at least to some extent, the blood-brain barrier (BBB). Here we describe further modifications of this analog aimed at enhancing brain delivery by increasing lipophilicity. Two new cyclic pentapeptides, Tyr-c(D-Lys-D-1-Nal-Phe-Asp)-NH2 and Tyr-c(D-Lys-D-2-Nal-Phe-Asp)-NH2 (where 1-Nal=1- naphthyl-3-alanine, 2-Nal=2-naphthyl-3-alanine) were synthesized and evaluated in biological assays. Both analogs showed high µ -opioid receptor affinity and agonist activity and were stable in the rat brain homogenates. Unfortunately, the increase of lipophilicity was achieved at the expense of water solubility. The analog with D-2-Nal residue showed strong analgesic effect when given i.c.v. but could not be tested after intravenous (i.v.) administration where higher concentrations of the compound are required. However, this analog showed inhibitory effect on gastrointestinal (GI) motility in vivo, providing an interesting approach to the development of peripherally restricted agents that could be useful for studying gastrointestinal disorders in animal models.

Keywords: Binding studies, µ -, δ - opioid receptor, hot-plate test, solid phase peptide synthesis, blood-brain barrier, lipophilicity.

Purchase Online Rights and Permissions

Article Details

Volume: 10
Issue Number: 2
First Page: 154
Last Page: 161
Page Count: 8
DOI: 10.2174/157340641002140131161135
Advertisement

Related Journals




Webmaster Contact: urooj@benthamscience.org Copyright © 2014 Bentham Science